УПРАВЛЕНИЕ ГЛАВНОКОМАНДУЮЩЕГО ВОЕННО-ВОЗДУШНЫМИ СИЛАМИ

СРЕДСТВА МЕХАНИЗАЦИИ АЭРОДРОМНОГО ОБСЛУЖИВАНИЯ САМОЛЕТОВ

Одобрено УВУЗ ВВС в качестве учебного пособия для слушателей академий, курсантов авиационных училищ и офицеров тыла ВВС

ВОЕННОЕ ИЗДАТЕЛЬСТВО МИНИСТЕРСТВА ОБОРОНЫ СОЮЗА ССР Москва—1958

каждой банке, закрываются отверстия банок пробками, поверхность батарей протирается сначала тряпкой, смоченной нейтрализующим раствором, а затем сухой тряпкой. После обработки батареи передаются в соответствующие подразделения для использования по назначению.

2. АЭРОДРОМНЫЕ ПЕРЕДВИЖНЫЕ ЭЛЕКТРИЧЕСКИЕ АГРЕГАТЫ

Аэродромными передвижными электрическими агрегатами называются передвижные установки, предназначенные для выработки электроэнергии и питания ею самолетов и других потребителей. Такие установки часто называют электроагрегатами. Этим названием мы будем пользоваться в дальнейшем.

Аэродромные электроагрегаты должны обладать хорошей маневренностью, поскольку их в процессе эксплуатации необходимо часто перемещать от одного потребителя к другому. Поэтому они строятся на базе автомобилей, прицепов или в виде самоходных установок, имеющих двигатель, силовую передачу и ведущие колеса. В зависимости от вида транспортных средств, на которых монтируется оборудование электроагрегатов, аэродромные электроагрегаты могут быть автомобильного, прицепного и самоходного типа. Наиболее распространены аэродромные передвижные электроагрегаты автомобильного типа. Электроагрегаты автомобильного типа изготовляются с отдельным двигателем привода генератора и с приводом генератора от двигаавтомобиля. на котором смонтирован агрегат.

Примером устройства электроагрегата с отдельным двигателем генератора может служить аэродромный передвижной электроагрегат АПА-7. В качестве электроагрегатов с приводом генератора от двигателя автомобиля рассмотрим аэродромные передвижные электроагрегаты АПА-2 и АПА-2М.

Основные технические данные этих агрегатов приведены в табл. 23. Электроагрегат марки АПА-2МП, приспособленный для выработки постоянного и переменного тока, имеет одинаковые общие технические данные с агрегатом АПА-2М, кроме технических данных преобразователя, которые приведены ниже.

Марка агрегата Наименование данных	апа-7	АПА-2	аПА-2М	
Шасси автомобиля	«Москвич»	ЗИС-150	зис-150	
Габариты электроагрегата в по- ходном положении в милли- метрах:	7 18			
длина	3900 1450 1550	6720 2385 2210	6720 2385 2210	
Общий вес электроагрегата в килограммах	1500	6000	6000	
Генератор				
Тип (марка)	ГСР-9000 Постоянный	ПР-600 Постоянный	ПР-600 Постоянный	
Номинальное напряжение в вольтах	28,5	28,5	28,5	
перах при температуре воз- духа 30-40°C	246	600	600	
Номинальная мощность в кило-	7	17	17	
Номинальное число оборотов в минуту	5200	1600	1600	
ковременной перегрузки в амперах	600	1200	1200	
Минимальное напряжение при перегрузке в вольтах	15	23	23-21,5	
Режим агрегата при работе генератора в буфере с батареями				
При длительной работе:	- 1111	DI T LT		
напряжение на щите в вольтах	28,5	28,5	28,5	
в амперах	246	600	600	
максимальная сила тока в амперах	1200	1200	1200	
минимальное напряжение в вольтах	15	23	23—21,5	

Марка агрегата		-	
Наименование данных	АПА-7	АПА-2	АПА-2М
число включений в пере-	1	3	3
грузочном цикле продолжительность одно- го включения в секун-		ď	3
дах	3	6	6
ными включениями в секундах	-	30	30
в минутах	6	6	6
Аккумуляторные батареи			
ип	12-AO-50	12-AO-50	12-AO-50
Соличество штук	2 24	4 24	4 24
мкость в ампер-часах	45	45	45
Сила тока разрядки в амперах:	- 1		
номинальная	8 360	360 360	360
(оличество кабелей (двужиль- ных):			
основных	2	2	2
переходных под штепсель изделия 4	_	1	1
переходных под штепсель изделия 5	_	2	2
Ілина кабелей в метрах:			
основного	8 0,75	10	10
под номинальной на- грузкой		4	4
Состав команды	1	2	2
в минутах		10	10

Устройство электроагрегатов

Электроагрегат автомобильного типа с отдельным двигателем

Распространенным электроагрегатом автомобильного типа с отдельным двигателем привода генератора является электроагрегат АПА-7 (рис. 180). Он состоит из автомобиля «Москвич», приспособленного под электроагрегат, и

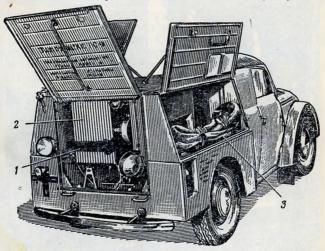


Рис. 180. Электроагрегат с индивидуальным двигателем привода генератора (АПА-7):

1 — масляный радиатор; 2 — жалюзи; 3 — кабель

специального оборудования. Обычный кузов автомобиля «Москвич» заменен специальным металлическим кузовом. Этот кузов состоит из кабины водителя и агрегатного отделения с люком в крыше и поднимающимися створками бортов, обеспечивающими доступ внутрь кузова с боков, сзади и сверху. В кабине водителя вместо сиденья пассажира установлен ящик с двумя силовыми аккумуляторными батареями 12-АО-50. На крышке ящика укладывается в отключенном положении кабель для питания потребителей тока. Против ящика силовых батарей на полу кабины установлена в отдельном ящике батарея системы зажигания двигателя привода генератора. На крышке правого веще-

вого ящика в кабине водителя смонтированы электроприборы. В агрегатном отделении на отдельной раме установлен двигатель автомобиля «Москвич» 1 (рис. 181) вместе с муфтой сцепления 2 и со всеми агрегатами и механизмами систем смазки, охлаждения, питания и запуска. С правой стороны от двигателя на его раме установлен ге-

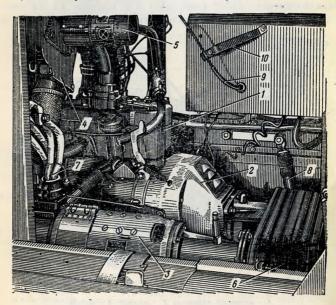


Рис. 181. Привод генератора электроагрегата АПА-7: I — двигатель; 2 — муфта сцепления; 3 — генератор; 4 — вентилятор; 5 — электродвигатель; 6 — ремениая передача; 7 и 8 — провода; 9 — гибинй вал; 10 — держатель вала

нератор 3, а над генератором — его вентилятор 4 с электродвигателем 5. В электроагрегатах АПА-7 применяется также ременный привод вентилятора от шкива коленчатого вала. В этих электроагрегатах вентилятор устанавливается около радиатора с правой стороны. Генератор приводится в действие от двигателя при помощи ременной передачи 6. Радиатор системы охлаждения, масляный радиатор 1 (см. рис. 180) и жалюзи 2 для регулирования интенсивности охлаждения установлены у заднего борта кузова. Для уси-

ления охлаждения двигателя применен четырехлопастный вентилятор с направляющим кожухом (диффузором). Система охлаждения герметизирована за счет пробки радиатора с паровым и воздушным клапанами, что обеспечивает работу двигателя при температуре воды до 104° С. С правой стороны машины установлен силовой щит пуско-регулирующей системы агрегата. К выводным клеммам (зажимам) генератора, установленным на щите, подключается второй кабель 3. Со стороны кузова к силовому щиту подведены силовые провода 7 (см. рис. 181) генератора и провода силовых аккумуляторных батарей, расположенных в кабине водителя. С левой стороны машины в переднем проеме кузова установлен щит управления 1 (рис. 182). Вблизи от щита расположены рычаг 2 муфты сцепления, рукоятка З включения стартера. управления жалюзями, кнопка 5 управления воздушной заслонкой и кнопка 6 управления дроссельной заслонкой карбюратора. Размещение щита управления электрооборудованием и средств управления силовой установкой с одной стороны машины обеспечивает значительную централиза-

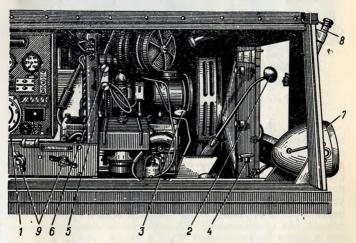


Рис. 182. Расположение основных средств управления на электроагрегате АПА-7:

I — щит управления; 2 — рычаг муфты сцепления; 3 — рукоятка стартера; 4 — рукоятка управления жалюзи раднатора; δ — кнопка воздушной заслонки; δ — кнопка дроссельной заслонки; 7 — фара; 8 — кронштейи; 9 — выходнюе клеммы

цию управления электроагрегатом при обслуживании самолетов. Для освещения пути при движении электроагрегата задним ходом и для освещения места работы установлены задняя фара 7 и кронштейн 8 для переносной фары. К клеммам 9, размещенным на основании щита 1, подведены силовые провода от силового щита. Щит 1 закреплен шарнирно. Его можно опускать для осмотра, но при этом необходимо вынуть вал 9 (см. рис. 181) спидометра из его держателя 10.

Электроагрегаты с приводом генератора от двигателя автомобиля

Распространенными электроагрегатами с приводом генератора от двигателя являются электроагрегаты АПА-2, АПА-2М (рис. 183) и АПА-2МП. Все эти агрегаты строятся на шасси автомобиля ЗИС-150.

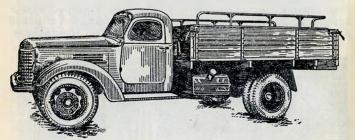


Рис. 183. Общий вид электроагрегата АПА-2М

На рис. 184 схематически показано общее устройство электроагрегата АПА-2М. Генератор 1 этого агрегата установлен под кабиной водителя и приводится в действие от двигателя 2 через муфту сцепления 3, коробку перемены передач 4 и трансмиссию генератора, которая состоит из карданного шарнира 5, дополнительного карданного вала, установленного внутри полого вала генератора, и муфты переключения 6. Двигатель 2 является общей силовой установкой для приведения в движение автомобиля и приведения в действие генератора. При помощи муфты 6 можно включать или задний мост путем перемещения рычага 7 вперед или генератор путем перемещения рычага 7 назад (по ходу машины). Вал муфты переключения соединен с укороченным карданным валом 8 при помощи шарнира 9.