## Q TEREX。

C듭ara－1 $\mid$ Crawler Crane 1600 t Lifting Capacity


듴ロロำ

## CRAMEER CRANE

## Y TEREX

## HIGHLIGHTS

- Max. capacity 1600 t
- Max. load moment 24002 mt
- Superlift radii 19-30 m
- Excellent capacities at the luffing fly jib
- Redundant drivelines
- 400 V power supply
- Optional TWIN-Kit for capacities up to 3200 t
- Max. Tragfähigkeit 1600 t
- Max. Lastmoment 24002 mt
- Superliftradien 19-30 m
- Ausgezeichnete Tragfähigkeiten am wippbaren Hilfsausleger
- Redundante Antriebseinheiten
- 400 V Stromaggregat
- Optionales TWIN-Kit für Tragfähigkeiten bis 3200 t
- Capacité maximale de 1600 t
- Moment de charge maximum 24002 mt
- Radius superlift 19-30 m
- Excellentes capacités avec la volée variable
- Double unité d'entraînement
- Groupe électrogène de 400 V
- En option le kit TWIN pour des capacités jusqu'à 3200 t

Main boom • Hauptausleger • Flèche principale
Working ranges with Superlift • Arbeitsbereiche mit Superlift • Portées avec Superlift（SSL，HSSL，SSL／LSL）．．．．．．．．．．．．．．．．．．．．．． 12
Lifting capacities with Superlift • Tragfähigkeiten mit Superlift • Capacités de levage avec Superlift（SSL，HSSL，SSL／LSL）．．．．．．．．．．．．． 13


## Specifications • Technische Daten • Caractéristiques

Specifications • Technische Daten • Caractéristiques ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4
Superlift configurations • Superlift－Konfigurationen • Combinaisons Superlift ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 7
Specifications • Technische Daten • Caractéristiques ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8
Boom combinations • Ausleger－Kombinationen • Combinaisons de flèche ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10

Working ranges with Superlift • Arbeitsbereiche mit Superlift • Portées avec Superlift（SSL，HSSL，SSL／LSL）．．．．．．．．．．．．．．．．．．．．．．．．．． 12
Lifting capacities with Superlift • Tragfähigkeiten mit Superlift • Capacités de levage avec Superlift（SSL，HSSL，SSL／LSL）．．．．．．．．．．．．．．．． 13

## Luffing fly jib • Wippbarer Hilfsausleger • Fléchette à volée variable

Working ranges with SL • Arbeitsbereiche mit SL • Portées avec SL（SWSL）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 16
Lifting capacities with Superlift • Tragähigkeiten mit Superlift • Capacités de levage avec Superlift（SWSL／SFSL $15^{\circ}$ ）．．．．．．．．．．．．．．．．． 17

## Fixed fly jib • Starrer Hilfsausleger • Fléchette fixe

Working ranges with SL • Arbeitsbereiche mit SL • Portées avec SL（SFVL）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 50
Lifting capacities with SL • Tragfähigkeiten mit SL • Capacités de levage avec SL（SFVL）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51

## Technical description • Technische Beschreibung • Descriptif technique

Crawler carrier • Superstructure • Optional equipment ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 52
Boom configurations • Superlift configurations • Optional equipment ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 53
Raupenunterwagen • Oberwagen • Zusatzausrüstung ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 54
Auslegervarianten • Superlift－Konfigurationen • Zusatzausrüstung ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 55
Châssis à chenilles • Partie supérieure • Equipements optionnels ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 56
Combinaisons de flèche • Combinaisons Superlift • Equipements optionnels ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 57

## SPECIFICATIONS • TECHNISCHE DATEN • CARACTÉRISTIQUES

WORKING SPEEDS (INFINITELY VARIABLE). ARBEITSGESCHWINDIGKEITEN (STUFENLOS REGELBAR) • VITESSES DE TRAVAIL (RÉGLABLES SANS PALIERS)

| Mechanisms | Rope ø | Speeds ${ }^{1)}$ | Single line pull | Length of hoist rope |
| :---: | :---: | :---: | :---: | :---: |
| Antriebe | Seil-ø | Geschwindigkeiten ${ }^{1}$ ) | Seilzug je Strang | Länge des Hubseils |
| Mécanismes | $\varnothing$ du câble | Vitesses ${ }^{1)}$ | Effort sur brin simple | Longueur du câble de levage |
| Hoist I+ II (H1+H2) |  |  |  |  |
| Hubwerk I+ II (H1+ H2) | 40 mm | max. $120 \mathrm{~m} / \mathrm{min}$ | $352 \mathrm{kN} / 316 \mathrm{kN}$ 2) | 1540 m |
| Treuil de levage I+II (H1+H2) |  |  |  |  |
| Runner winch R (H3) - option |  |  |  |  |
| Runnerwinde R (H3) - Option | 40 mm | max. $90 \mathrm{~m} / \mathrm{min}$ | 352 kN | 700 m |
| Tambour potence R (H3) - option |  |  |  |  |
| Boom derricking (W2) |  |  |  |  |
| Wippwerk Hauptausleger (W2) | 40 mm | max. $120 \mathrm{~m} / \mathrm{min}$ |  |  |
| Variation de flèche (W2) |  |  |  |  |
| Boom hoist (E) |  |  |  |  |
| Einziehwerk (E) | 40 mm | max. $40 \mathrm{~m} / \mathrm{min}$ |  |  |
| Relevage de flèche (E) |  |  |  |  |
| Jib luffing (W1) |  |  |  |  |
| Wippwerk Hilfsausleger (W1) | 40 mm | max. $105 \mathrm{~m} / \mathrm{min}$ |  |  |
| Variation de volée (W1) |  |  |  |  |
| Slewing (rpm) |  |  |  |  |
| Drehwerk ( $\mathrm{U} / \mathrm{min}$ ) |  | 0-0,6 ${ }^{1 / m i n}$ |  |  |
| Orientation (tr/mn) |  |  |  |  |
| 1) top layers • oberste Lagen • couches supérieures |  |  |  |  |
| ${ }^{2}$ ) without / with reeving effect considered • Angabe ohne / mit Wirkungsgrad der Einscherung • sans / avec effort de mouflage |  |  |  |  |


max． $0,4 \mathrm{~km} / \mathrm{h}$
max． $0,8 \mathrm{~km} / \mathrm{h}$


## YTEREX

## SPECIFICATIONS • TECHNISCHE DATEN • CARACTÉRISTIQUES

HOOK BLOCK SYSTEM. UNTERFLASCHENSYSTEM. SYSTÈMEDECROCHET-MOUFLE

| $\begin{aligned} & \text { Type } \\ & \text { Typ } \\ & \text { Type } \end{aligned}$ | Possible load Mögliche Traglast Charge possible | Number of sheaves Anzahl der Rollen Nombre de poulies | Number of lines Strangzahl Nombre de brins | Weight <br> Gewicht Poids | "D" |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \times 800$ | $\begin{array}{r} 1600 \mathrm{t} \\ 800 \mathrm{t} \\ 800 \mathrm{t} \\ 495 \mathrm{t} \end{array}$ | $\begin{aligned} & 2 \times 13 \\ & 2 \times 7 \\ & 1 \times 13 \\ & 1 \times 7 \end{aligned}$ | $\begin{aligned} & 2 \times 26 \\ & 2 \times 12 \\ & 2 \times 12 \\ & 1 \times 14 \end{aligned}$ | 44000 kg <br> $28000 \mathrm{~kg} / 18000 \mathrm{~kg}$ <br> $28000 \mathrm{~kg} / 18000 \mathrm{~kg}$ <br> $22000 \mathrm{~kg} / 8500 \mathrm{~kg}$ | $\begin{aligned} & 8,70 \mathrm{~m} \\ & 6,50 \mathrm{~m} \\ & 6,20 \mathrm{~m} \\ & 6,50 \mathrm{~m} \end{aligned}$ |
| $2 \times 675$ | $\begin{array}{r} 1350 \mathrm{t} \\ 675 \mathrm{t} \\ 675 \mathrm{t} \\ 370 \mathrm{t} \end{array}$ | $\begin{array}{lrr} 2 & \times & 10 \\ 2 \times 5 & 5 \\ 1 \times 10 \\ 1 \times 5 \end{array}$ | $\begin{aligned} & 2 \times 21 \\ & 2 \times 11 \\ & 1 \times 21 \\ & 1 \times 11 \end{aligned}$ | $40000 \mathrm{~kg} / 21000 \mathrm{~kg}$ <br> $16000 \mathrm{~kg} / 12500 \mathrm{~kg}$ <br> $16000 \mathrm{~kg} / 12500 \mathrm{~kg}$ <br> $14500 \mathrm{~kg} / 8000 \mathrm{~kg}$ | $\begin{aligned} & 8,50 \mathrm{~m} \\ & 6,00 \mathrm{~m} \\ & 6,00 \mathrm{~m} \\ & 6,00 \mathrm{~m} \end{aligned}$ |
| 100 | 100 t | $1 \times 1$ | $1 \times 3$ | $7700 \mathrm{~kg} / 3700 \mathrm{~kg}$ | 4,50 m |



## SUPERLIFT CONFIGURATIONS • SUPERLIFT-KONFIGURATIONEN

COMBINAISONS SUPERLIFT
STANDARD SUPERLIFT ATTACHMENT•SERIENMÄSSIGE SUPERLIFTEINRICHTUNG SUPERLIFT DE SÉRIE


VARIABLE SUPERLIFT ATTACHMENT.VARIABLESUPERLIFTEINRICHTUNG•SUPERLIFTVARIABLE


## Q TEREX




## Q TEREX

BOOM COMBINATIONS • AUSLEGER-KOMBINATIONEN • COMBINAISONS DE FLÈCHE



## Q TEREX

## CQ LQQ CQ/ I C WORKING RANGES ARBEITSBEREICHE PORTÉES



## SSL，HSSL LIFTINGCAPACITIES．TRAGFÄHIGKEITEN

| $\square$ | 295 t＋ 60 t ZB |  |  | 19.30 m | － | －10，50 m | $360^{\circ}$ |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \％ 48 m | 54 m |  | 60 m |  | 66 m |  | 72 m |  | 78 m |  |
| $\xrightarrow{3}$ | $\boxminus 0 t-640 t$ | 0t－640t | L t | $\downarrow 0 t-640 t$ |  | 10t－640t | 0 t | － $0 t-640 t$ | 0 t | － $0 t-640 t$ | $\xrightarrow{\substack{\text { che }}}$ |
| m | t | t | t | t | t | t | t | t | t | t | m |
| 10 | 1600，0 | 1600，0 | 799，0 | 1555，0 | － | － | － | － | － | － | 10 |
| 11 | 1585，5 | 1581，0 | 726，5 | 1553，0 | 684，0 | 1405，0 | 651，0 | 1238，0 | － | － | 11 |
| 12 | 1571，0 | 1562，0 | 654，0 | 1553，0 | 623，0 | 1405，0 | 594，0 | 1238，0 | 568，0 | 1098，0 | 12 |
| 14 | 1496，0 | 1487，0 | 551，0 | 1478，0 | 527，0 | 1383，0 | 505，0 | 1238，0 | 484，0 | 1098，0 | 14 |
| 16 | 1428，0 | 1419，0 | 474，0 | 1410，0 | 455，0 | 1383，0 | 436，0 | 1238，0 | 419，0 | 1098，0 | 16 |
| 18 | 1309，0 | 1309，0 | 414，0 | 1302，0 | 398，0 | 1290，0 | 383，0 | 1204，0 | 368，0 | 1098，0 | 18 |
| 20 | 1192，0 | 1192，0 | 367，0 | 1185，0 | 353，0 | 1178，0 | 339，0 | 1168，0 | 326，0 | 1060，0 | 20 |
| 22 | 1091，0 | 1085，0 | 323，0 | 1079，0 | 315，0 | 1073，0 | 303，0 | 1069，0 | 292，0 | 1038，0 | 22 |
| 24 | 991，0 | 992，0 | 282，0 | 986，0 | 278，0 | 980，0 | 273，0 | 976，0 | 263，0 | 973，0 | 24 |
| 26 | 912，0 | 913，0 | 249，0 | 907，0 | 245，0 | 901，0 | 242，0 | 897，0 | 239，0 | 893，0 | 26 |
| 28 | 830，0 | 845，0 | 222，0 | 839，0 | 218，0 | 833，0 | 215，0 | 829，0 | 213，0 | 825，0 | 28 |
| 30 | 751，0 | 785，0 | 199，0 | 779，0 | 195，0 | 774，0 | 192，0 | 770，0 | 190，0 | 766，0 | 30 |
| 34 | 620，0 | 687，0 | 163，0 | 682，0 | 159，0 | 676，0 | 156，0 | 672，0 | 154，0 | 668，0 | 34 |
| 38 | 538，0 | 580，0 | 136，0 | 604，0 | 132，0 | 599，0 | 129，0 | 594，0 | 126，0 | 591，0 | 38 |
| 42 | 449，0 | 491，0 | 116，0 | 532，0 | 111，0 | 536，0 | 108，0 | 532，0 | 104，0 | 528，0 | 42 |
| 46 | ， | 436，0 | 99，5 | 457，0 | 94，0 | 484，0 | 90，0 | 479，0 | 87，0 | 476，0 | 46 |
| 50 | － | 367，0 | 86，0 | 392，0 | 80，0 | 424，0 | 76，0 | 435，0 | 72，0 | 431，0 | 50 |
| 54 | － | ， | 75，0 | 353，0 | 68，5 | 369，0 | 64，0 | 394，0 | 60，5 | 393，0 | 54 |
| 55 | － | － | 73，0 | 339，0 | 66，2 | 356，2 | 61，6 | 382，0 | 58，0 | 385，0 | 55 |
| 58 | － | － | － | － | 59，5 | 324，0 | 54，5 | 346，0 | 50，5 | 361，0 | 58 |
| 60 | － | － | － | － | 55，5 | 312,0 | 50，6 | 324，0 | 46，4 | 342，5 | 60 |
| 62 | － | － | － | － | ， | － | 46，8 | 302，0 | 42，3 | 324，0 | 62 |
| 65 | － | － | － | － | － | － | 41，9 | 278，0 | 37，1 | 294，7 | 65 |
| 66 | － | － | － | － | － | － | － | － | 35，4 | 285，0 | 66 |
| 70 | － | － | － | － | － | － | － | － | 29，8 | 249，0 | 70 |


| U） | 0 | 84 m |  | 90 m |  | 96 m |  | 102 m |  | 108 m |  | $\bigcup_{1 \rightarrow}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\boxminus$ |  | $\checkmark 0 t-640 t$ | L t | $\square 0 t-640 t\rfloor$ | 0 t | $\checkmark$ 0t－640t | 0 t | $\checkmark$ 0t－640t | 0 t | $10 t-640 t$ |  |
| m |  | t | t | t | t | t | t | t | t | t | t | m |
| 12 |  | 543，0 | 976，0 | － | － | － | － | － | － | － | － | 12 |
| 13 |  | 503，0 | 976，0 | 479，0 | 867，0 | 459，0 | 775，0 | － | － | － | － | 13 |
| 14 |  | 463，0 | 976，0 | 445，0 | 867，0 | 426，0 | 775，0 | 409，0 | 695，0 | 392，0 | 625，0 | 14 |
| 16 |  | 402，0 | 976，0 | 387，0 | 867，0 | 371，0 | 775，0 | 357，0 | 695，0 | 342，0 | 625，0 | 16 |
| 18 |  | 353，0 | 976，0 | 340，0 | 867，0 | 327，0 | 775，0 | 314，0 | 695，0 | 302，0 | 625，0 | 18 |
| 20 |  | 314，0 | 973，0 | 302，0 | 867，0 | 290，0 | 775，0 | 279，0 | 695，0 | 268，0 | 625，0 | 20 |
| 22 |  | 281，0 | 940，0 | 270，0 | 858，0 | 260，0 | 774，0 | 250，0 | 695，0 | 240，0 | 625，0 | 22 |
| 24 |  | 253，0 | 927，0 | 244，0 | 846，0 | 234，0 | 766，0 | 225，0 | 692，0 | 215，0 | 624，0 | 24 |
| 26 |  | 229，0 | 888，0 | 220，0 | 829，0 | 212，0 | 759，0 | 203，0 | 687，0 | 194，0 | 621，0 | 26 |
| 28 |  | 208，0 | 820，0 | 200，0 | 818，0 | 192，0 | 747，0 | 184，0 | 683，0 | 176，0 | 617，0 | 28 |
| 30 |  | 187，0 | 761，0 | 183，0 | 759，0 | 175，0 | 743，0 | 168，0 | 674，0 | 160，0 | 613，0 | 30 |
| 34 |  | 150，0 | 663，0 | 149，0 | 661，0 | 146，0 | 657，0 | 140，0 | 653，0 | 133，0 | 600，0 | 34 |
| 38 |  | 123，0 | 586，0 | 121，0 | 583，0 | 118，0 | 579，0 | 115，0 | 576，0 | 111，0 | 569，0 | 38 |
| 42 |  | 100，0 | 523，0 | 98，5 | 521，0 | 95，0 | 516，0 | 92，0 | 513，0 | 90，0 | 510，0 | 42 |
| 46 |  | 82，5 | 471，0 | 80，5 | 468，0 | 77，0 | 464，0 | 73，5 | 461，0 | 71，5 | 458，0 | 46 |
| 50 |  | 68，0 | 426，0 | 65，5 | 423，0 | 62，0 | 419，0 | 58，5 | 416，0 | 56，5 | 413，0 | 50 |
| 54 |  | 55，5 | 388，0 | 53，5 | 385，0 | 49，7 | 381，0 | 46，5 | 378，0 | 44，3 | 375，0 | 54 |
| 58 |  | 45，8 | 355，0 | 43，2 | 353，0 | 39，4 | 348，0 | 36，1 | 345，0 | 33，8 | 342，0 | 58 |
| 62 |  | 37，3 | 327，0 | 34，6 | 324，0 | 30，6 | 320，0 | 27，2 | 316，0 | 24，8 | 314，0 | 62 |
| 66 |  | 30，2 | 301，0 | 27，2 | 300，0 | 23，1 | 295，0 | 19，6 | 292，0 | 17，0 | 289，0 | 66 |
| 70 |  | 24，2 | 267，0 | 20，9 | 278，0 | 16，6 | 274，0 | 13，0 | 270，0 | 10，3 | 267，0 | 70 |
| 72 |  | 21，7 | 251，5 | 18，2 | 265，0 | 13，8 | 264，0 | 10，1 | 260，0 | ， | 257，0 | 72 |
| 74 |  | 19，2 | 236，0 | 15，5 | 252，0 | 11，1 | 254，0 | － | 250，0 | － | 247，0 | 74 |
| 76 |  | 17，0 | 220，0 | 13，2 | 238，0 | ， | 244，0 | － | 241，5 | － | 238，5 | 76 |
| 78 |  | ， | ， | 11，0 | 224，0 | － | 234，0 | － | 233，0 | － | 230，0 | 78 |
| 79 |  | － | － | 10，0 | 217，0 | － | 227，7 | － | 229，2 | － | 226，0 | 79 |
| 81 |  | － | － | ， | 203，0 | － | 215，2 | － | 221，7 | － | 218，0 | 81 |
| 82 |  | － | － | － | ， | － | 209，0 | － | 218，0 | － | 214，0 | 82 |
| 86 |  | － | － | － | － | － | 185，0 | － | 196，0 | － | 200，0 | 86 |
| 90 |  | － | － | － | － | － | － | － | 175，0 | － | 183，0 | 90 |
| 91 |  | － | － | － | － | － | － | － | 169，0 | － | 178，2 | 91 |
| 94 |  | － | － | － | － | － | － | － | － | － | 164，0 | 94 |
| 96 |  | － | － | － | － | － | － | － | － | － | 154，0 | 96 |

QQ / S LIFTING CAPACITIES. TRAGFÄHIGKEITEN
CAPACITÉS DE LEVAGE


## SQ / Q LIFTING CAPACITIES. TRAGFÄHIGKEITEN CAPACITÉS DE LEVAGE

|  | 295 t + 60 t ZB | $\leftrightarrow$ | 19-30 m | - | 10,50 m | $360^{\circ}$ | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 144 m |  | 150 m |  | 6 m |  |  |
| $\bigcup_{4}$ | $\boxminus\llcorner 0 t \quad\llcorner 0.640 t$ | $10 t$ | - $00 t-640 t$ |  | 0t-640t |  | $\bigcup_{1}$ |
| m | $t$ t | t | t | t | t |  | m |
| 18 | 248,0 331,0 | 243,0 | 299,0 | 234,0 | 268,0 |  | 18 |
| 20 | 221,0 331,0 | 217,0 | 299,0 | 209,0 | 268,0 |  | 20 |
| 22 | 198,0 331,0 | 195,0 | 299,0 | 187,0 | 268,0 |  | 22 |
| 24 | 179,0 331,0 | 175,0 | 299,0 | 169,0 | 268,0 |  | 24 |
| 26 | 161,0 331,0 | 158,0 | 299,0 | 152,0 | 267,0 |  | 26 |
| 28 | 145,0 331,0 | 143,0 | 299,0 | 137,0 | 267,0 |  | 28 |
| 30 | 132,0 331,0 | 130,0 | 299,0 | 124,0 | 267,0 |  | 30 |
| 34 | 108,0 331,0 | 107,0 | 298,0 | 102,0 | 265,0 |  | 34 |
| 38 | 89,0 330,0 | 88,5 | 296,0 | 83,5 | 262,0 |  | 38 |
| 42 | 73,0 329,0 | 72,5 | 294,0 | 68,0 | 259,0 |  | 42 |
| 46 | 59,5 323,0 | 59,0 | 291,0 | 55,0 | 256,0 |  | 46 |
| 50 | 48,0 313,0 | 47,9 | 283,0 | 44,0 | 251,0 |  | 50 |
| 54 | 37,8 304,0 | 38,0 | 276,0 | 34,1 | 246,0 |  | 54 |
| 58 | 29,0 290,0 | 29,2 | 269,0 | 25,4 | 240,0 |  | 58 |
| 62 | 19,7 279,0 | 20,5 | 262,0 | 17,8 | 235,0 |  | 62 |
| 66 | 11,7 270,0 | 12,5 | 250,0 | 11,0 | 229,0 |  | 66 |
| 70 | - 260,0 | , | 244,0 | , | 221,0 |  | 70 |
| 74 | 240,0 | - | 237,0 | - | 215,0 |  | 74 |
| 78 | 223,0 | - | 223,0 | - | 210,0 |  | 78 |
| 82 | 207,0 | - | 207,0 | - | 205,0 |  | 82 |
| 86 | 193,0 | - | 193,0 | - | 192,0 |  | 86 |
| 90 | 179,0 | - | 180,0 | - | 179,0 |  | 90 |
| 94 | 168,0 | - | 168,0 | - | 167,0 |  | 94 |
| 98 | 157,0 | - | 157,0 | - | 156,0 |  | 98 |
| 102 | 147,0 | - | 147,0 | - | 146,0 |  | 102 |
| 106 | - 137,0 | - | 138,0 | - | 136,0 |  | 106 |
| 110 | 129,0 | - | 129,0 | - | 128,0 |  | 110 |
| 114 | 121,0 | - | 122,0 | - | 120,0 |  | 114 |
| 118 | 114,0 | - | 114,0 | - | 112,0 |  | 118 |
| 122 | 103,0 | - | 108,0 | - | 106,0 |  | 122 |
| 126 | 93,0 | - | 98,0 | - | 99,5 |  | 126 |
| 130 | - - | - | 88,5 | - | 90,5 |  | 130 |
| 134 | - - | - | - | - | 81,5 |  | 134 |
| 138 | - | - | - | - | 72,5 |  | 138 |
| 142 | - | - | - | - | - |  | 142 |

## ⿶TEREX

CWC WORKING RANGES • ARBEITSBEREICHE
PORTÉES


## SWSL／SFSL $15^{\circ}$ LIFFTMG C CAPACITIES ．TRAGFAHIGKEITEN capacités de levage

| 295 t＋ 60 t ZB |  |  |  | 118 | －30 m |  | ＋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $54 \mathrm{~m}+36 \mathrm{~m}$ |  |  |  |  |  |  |  |
| $\underset{\sim}{\bigotimes}$ | SWSL |  |  |  |  |  | SFSL |
|  | 0 t |  |  |  | 640 t |  |  |
|  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | $t$ | t | t | t | t | t |
| 18 | － | 629，0＊ | ． | － | － | － | － |
| 20 | － | 614，0＊ | － | － | － | － |  |
| 22 | － | 594，0＊ | － | － | － | － | － |
| 24 | 291，0 | 653，0 | － | － | － | － | 640，0 |
| 26 | 268，0 | 639，0 | － | － | － | － | 640，0 |
| 28 | 249，0 | 603，0 | － | － | － | － | 640，0 |
| 30 | 231，0 | 543，0 | － | － | － | － | 640，0 |
| 34 | 197，0 | 450，0 |  | － | － | － | 632，0 |
| 37 | 175，5 | 398，5 | 613，0 | － | － | － | 611，5 |
| 38 | 169，0 | 383，0 | 582，0 | － | － | － | 598，0 |
| 42 | 146，0 | 332，0 | 478，0 | － | － | － | 532，0 |
| 46 | － | － | 403，0 | － | － | － | 477，0 |
| 50 | － | ． | 348，0 | － | － | － | 431，0 |
| 51 | － | － | 336，5 | 424，0 | － | － | 420，5 |
| 52 | － | ． | 325，0 | 414，0 | － | － | 410，0 |
| 54 | － | － | － | 397，0 | － | － | 389，0 |
| 58 | － | － | － | 360，0 | － | － | 345，0 |
| 61 | － | － | － | 325，0 | － | － | 315，7 |
| 62 | － | － | － | － | － | － | 306，0 |
| 64 | － | － | － | － | 291，0 | － | 288，5 |
| 66 | － | － | － | － | 280，0 | － | 271，0 |
| 69 | － | － | － | － | 265，0 | － | 247，7 |
| 70 | － | － | － | － | － | － | 240，0 |
| 74 | － | － | － | － | － | 222，0 | 220，0 |
| 76 | － | － | － | － | － | 215，0 | 208，0 |
| 78 | － | － | － | － | － | － | 196，0 |
| 82 | － | － | － | － | － | － | 170，0 |




| $10,50 \mathrm{~m}$ | $360^{\circ}$ | IS O |
| :--- | :--- | :--- |
| $54 \mathrm{~m}+60 \mathrm{~m}$ |  |  |


|  | SWSL |  |  |  |  |  | SFSL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0t－640t |  |  |  |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | ， | t | t | t | t | t |
| 26 | － | 394，0＊ | － | － | － | － | － |
| 28 | － | 386，0＊ | － | － | － | － | － |
| 30 | － | 378，0＊ | － | － | － | － | － |
| 32 | 191，0 | 411，0 | － | － | － | － | 401，0 |
| 34 | 179，0 | 406，0 | － | － | － | － | 401，0 |
| 38 | 158，0 | 396，0 | － | － | － | － | 401，0 |
| 42 | 141，0 | 367，0 | － | － | － | － | 401，0 |
| 46 | 124，0 | 322，0 | － | － | － | － | 401，0 |
| 49 | 113，5 | 293，5 | 400，0 | － | － | － | 391，0 |
| 50 | 110，0 | 285，0 | 385，0 | － | － | － | 387，0 |
| 54 | 97，5 | 255，0 | 336，0 | － | － | － | 363，0 |
| 58 | 87，5 | 229，0 | 297，0 | － | － | － | 340，0 |
| 62 | 78，5 | 208，0 | 264，0 | － | － | － | 319，0 |
| 64 | 75，0 | 197，0 | 250，0 | － | － | － | 310，0 |
| 66 | － | － | 238，0 | － | － | － | 301，0 |
| 67 | － | － | 232，0 | 296，0 | － | － | 295，2 |
| 70 | － | － | 215，0 | 271，0 | － | － | 278，0 |
| 74 | － | － | 195，0 | 243，0 | － | － | 251，0 |
| 78 | － | － | － | 220，0 | － | － | 227，0 |
| 82 | － | － | － | 200，0 | 205，0 | － | 204，0 |
| 86 | － | － | － | － | 193，0 | － | 184，0 |
| 90 | － | － | － | － | 182，0 | － | 167，0 |
| 92 | － | － | － | － | 176，0 | － | 161，0 |
| 94 | － | － | － | － | － | － | 155，0 |
| 95 | － | － | － | － | － | 153，0 | 150，7 |
| 98 | － | － | － | － | － | 146，0 | 138，0 |
| 99 | － | － | － | － | － | 144，0 | 134，0 |
| 102 | － | － | － | － | － | － | 122，0 |
| 106 | － | － | － | － | － | － | 105，0 |


| $54 \mathrm{~m}+72 \mathrm{~m}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | t | t | t | t | t | t | t |
| 30 | － | 315，0＊ | － | － | － | － | － |
| 34 | － | 306，0＊ | － | － | － | － | － |
| 36 | 157，0 | 328，0 | － | － | － | － | 321，0 |
| 38 | 148，0 | 325，0 | － | － | － | － | 321，0 |
| 42 | 132，0 | 320，0 | － | － | － | － | 321，0 |
| 46 | 118，0 | 314，0 | － | － | － | － | 321，0 |
| 50 | 106，0 | 283，0 | － | － | － | － | 321，0 |
| 54 | 95，0 | 253，0 | － | － | － | － | 315，0 |
| 56 | 89，5 | 240，0 | 314，0 | － | － | － | 309，5 |
| 58 | 84，5 | 227，0 | 295，0 | － | － | － | 304，0 |
| 62 | 75，5 | 206，0 | 263，0 | － | － | － | 286，0 |
| 66 | 68，0 | 187，0 | 236，0 | － | － | － | 269，0 |
| 70 | 61，0 | 171，0 | 213，0 | － | － | － | 253，0 |
| 74 | 55，0 | 157，0 | 193，0 | 241，0 | － | － | 239，0 |
| 76 | 52，0 | 146，0 | 185，0 | 229，0 | － | － | 233，0 |
| 78 | － | － | 176，0 | 218，0 | － | － | 227，0 |
| 82 | － | － | 162，0 | 198，0 | － | － | 215，0 |
| 86 | － | － | 149，0 | 180，0 | － | － | 196，0 |
| 90 | － | － | － | 165，0 | － | － | 178，0 |
| 91 | － | － | － | 161，5 | 174，0 | － | 173，5 |
| 94 | － | － | － | 152，0 | 166，0 | － | 160，0 |
| 98 | － | － | － | ， | 157，0 | － | 145，0 |
| 102 | － | － | － | － | 148，0 | － | 136，0 |
| 105 | － | － | － | － | － | 127，0 | 126，2 |
| 106 | － | － | － | － | － | 125，0 | 123，0 |
| 110 | － | － | － | － | － | 118，0 | 109，0 |
| 114 | － | － | － | － | － | － | 95，5 |

Remarks • Bemerkungen • Remarques：＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

SM/SL/SFSL $15^{\circ} \begin{aligned} & \text { LIFTING capacities. TRAGFÄHIGKEITEN } \\ & \text { capacitéS dE LEVAGE }\end{aligned}$


## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$ • Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAHIGKEITEN CAPACITÉS DELEVAGE

| 295 t＋ 60 t ZB |  |  |  | 19.30 m |  |  | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $54 m+108 \mathrm{~m}$ |  |  |  |  |  |  |  |
| $\bigcup_{4}$ | SWSL |  |  |  |  |  | SFSL |
|  |  |  |  | 0 t － | 0 t |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t |
| 40 | － | 154，0＊ | － | － | － | － | － |
| 42 | － | 154，0＊ | － | － | － | － | － |
| 46 | － | 151，0＊ | － | － | － | － | － |
| 48 | 85，5 | 155，0 | － | － | － | － | 155，0 |
| 50 | 80，5 | 154，0 | － | － | － | － | 154，0 |
| 54 | 71，5 | 152，0 | － | － | － | － | 154，0 |
| 58 | 63，5 | 150，0 | － | － | － | － | 152，0 |
| 62 | 56，0 | 148，0 | － | － | － | － | 151，0 |
| 66 | 49，9 | 146，0 | － | － | － | － | 149，0 |
| 70 | 44，2 | 145，0 | － | － | － | － | 147，0 |
| 74 | 39，0 | 143，0 | 143，0 | － | － | － | 144，0 |
| 78 | 34，2 | 131，0 | 143，0 | － | － | － | 142，0 |
| 82 | 29，3 | 120，0 | 143，0 | － | － | － | 139，0 |
| 86 | 24，9 | 110，0 | 135，0 | － | － | － | 137，0 |
| 88 | 22，8 | 105，0 | 129，0 | － | － | － | 136，0 |
| 90 | 20，9 | 101，0 | 124，0 | － | － | － | 135，0 |
| 94 | 17，3 | 93，0 | 113，0 | － | － | － | 132，0 |
| 98 | 14，0 | 85，5 | 104，0 | 124，0 | － | － | 125，0 |
| 100 | 12，5 | 82，0 | 100，0 | 121，0 | － | － | 121，5 |
| 102 | － | 78，7 | 96，0 | 116，0 | － | － | 118，0 |
| 106 | － | 72，7 | 88，0 | 106，0 | － | － | 112，0 |
| 108 | － | 70，0 | 84，5 | 102，0 | － | － | 109，0 |
| 110 | － | － | 81，0 | 97，5 | － | － | 106，0 |
| 114 | － | － | 75，0 | 90，0 | － | － | 101，0 |
| 118 | － | － | 69，0 | 83，0 | － | － | 96，5 |
| 120 | － | － | 66，5 | 79，5 | 94，5 | － | 93，7 |
| 122 | － | － |  | 76，5 | 90，5 | － | 91，0 |
| 126 | － | － | － | 70，5 | 83，5 | － | 84，5 |
| 128 | － | － | － | 68，0 | 80，0 | － | 80，7 |
| 130 | － | － | － | － | 77，0 | － | 77，0 |
| 134 | － | － | － | － | 71，0 | － | 68，5 |
| 136 | － | － | － | － | 68，5 | － | 64，0 |
| 138 | － | － | － | － | － | 62，0 | 59，5 |
| 142 | － | － | － | － | － | 58，5 | 51，5 |
| 144 | － | － | － | － | － | 57，0 | 47，3 |
| 146 | － | － | － | － | － | － | 43，2 |
| 150 | － | － | － | － | － | － | 34，8 |

## Remarks－Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；
capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；
Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet

Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；
le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche

[^0]| 10，50 m |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $60 \mathrm{~m}+36 \mathrm{~m}$ |  |  |  |  |  |  |  |
| $\mathrm{S}_{4}$ | SWSL |  |  |  |  |  | SFSL |
|  |  |  |  |  | 40 t |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t |
| 18 | － | 573，0＊ | － | － | － | － | － |
| 20 | － | 564，0＊ | － | － | － | － | － |
| 22 | － | 545，${ }^{*}$ | － | － | － | － | － |
| 24 | 280，0 | 600，0 | － | － | － | － | 584，0 |
| 26 | 259，0 | 587，0 | － | － | － | － | 584，0 |
| 28 | 240，0 | 574，0 | － | － | － | － | 584，0 |
| 30 | 223，0 | 556，0 | － | － | － | － | 584，0 |
| 34 | 195，0 | 459，0 | － | － | － | － | 584，0 |
| 38 | 166，0 | 389，0 | － | － | － | － | 570，0 |
| 39 | 160，5 | 375，0 | 568，0 | － | － | － | 562，0 |
| 42 | 144，0 | 337，0 | 513，0 | － | － | － | 527，0 |
| 46 | － | － | 429，0 | － | － | － | 473，0 |
| 50 | － | － | 367，0 | － | － | － | 426，0 |
| 52 | － | － | 341，0 | － | － | － | 406，0 |
| 54 | － | － | － | 390，0 | － | － | 386，0 |
| 58 | － | － | － | 360，0 | － | － | 352，0 |
| 62 | － | － | － | 334，0 | － | － | 322，0 |
| 63 | － | － | － | 328，0 | － | － | 313，7 |
| 66 | － | － | － | － | － | － | 289，0 |
| 67 | － | － | － | － | 282，0 | － | 281，0 |
| 70 | － | － | － | － | 267，0 | － | 257，0 |
| 72 | － | － | － | － | 258，0 | － | 242，5 |
| 74 | － | － | － | － | － | － | 228，0 |
| 78 | － | － | － | － | － | 202，0 | 202，0 |
| 80 | － | － | － | － | － | 196，0 | 191，5 |
| 82 | － | － | － | － | － | － | 184，0 |
| 86 | － | － | － | － | － | － | 165，0 |


| $60 \mathrm{~m}+48 \mathrm{~m}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | t | t | t | t | t | t | t |
| 22 | － | 457，0＊ | － | － | － | － | － |
| 24 | － | 446，0＊ | － | － | － | － | － |
| 26 | － | 434，0＊ | － | － | － | － | － |
| 28 | 225，0 | 476，0 | － | － | － | － | 463，0 |
| 30 | 209，0 | 468，0 | － | － | － | － | 463，0 |
| 34 | 183，0 | 453，0 | － | － | － | － | 463，0 |
| 38 | 162，0 | 419，0 | － | － | － | － | 463，0 |
| 42 | 141，0 | 362，0 | － | － | － | － | 462，0 |
| 45 | 127，5 | 327，5 | 464，0 | － | － | － | 447，0 |
| 46 | 123，0 | 317，0 | 461，0 | － | － | － | 441，0 |
| 50 | 109，0 | 281，0 | 394，0 | － | － | － | 418，0 |
| 54 | 97，5 | 248，0 | 342，0 | － | － | － | 389，0 |
| 58 | ， | － | 302，0 | － | － | － | 354，0 |
| 62 | － | － | 269，0 | 327，0 | － | － | 324，0 |
| 64 | － | － | 255，0 | 316，0 | － | － | 310，5 |
| 66 | － | － | － | 305，0 | － | － | 297，0 |
| 70 | － | － | － | 284，0 | － | － | 274，0 |
| 74 | － | － | － | 255，0 | － | － | 247，0 |
| 75 | － | － | － | 248，0 | － | － | 240，7 |
| 76 | － | － | － | － | 235，0 | － | 234，5 |
| 78 | － | － | － | － | 227，0 | － | 222，0 |
| 82 | － | － | － | － | 213，0 | － | 199，0 |
| 84 | － | － | － | － | 207，0 | － | 188，0 |
| 86 | － | － | － | － | － | － | 177，0 |
| 89 | － | － | － | － | － | 164，0 | 162，2 |
| 90 | － | － | － | － | － | 161，0 | 159，0 |
| 92 | － | － | － | － | － | 157，0 | 153，5 |
| 94 | － | － | － | － | － | － | 148，0 |
| 98 | － | － | － | － | － | － | 129，0 |

## SMS/ SEQ 150 LIFTING CAPACITIES . TRAGFÄHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG C CAPACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ} \cdot$ Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL/ SFSL $15^{\circ}$ LIFTTMG C CAPACITIES . TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$
capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$;
Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC-1 berechnet
Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$;
le système de commande de la grue IC-1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$

| 10,50 m |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $66 \mathrm{~m}+36 \mathrm{~m}$ |  |  |  |  |  |  |  |
| $\mathrm{S}_{\leftrightarrow}$ | SWSL |  |  |  |  |  | SFSL |
|  |  |  |  |  | 40 t |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | 1 | t | t | t | t | t |
| 18 | - | 536,0* | - | - | - | - | - |
| 20 | - | 528,0* | - | - | - | - | - |
| 22 | - | 511,0* | - | - | - | - | - |
| 24 | 270,0 | 562,0 | - | - | - | - | 546,0 |
| 26 | 249,0 | 551,0 | - | - | - | - | 546,0 |
| 28 | 231,0 | 539,0 | - | - | - | - | 546,0 |
| 30 | 216,0 | 528,0 | - | - | - | - | 546,0 |
| 34 | 189,0 | 469,0 | - | - | - | - | 546,0 |
| 38 | 164,0 | 396,0 | - | - | - | - | 538,0 |
| 41 | 147,5 | 354,5 | 537,0 | - | - | - | 520,0 |
| 42 | 142,0 | 342,0 | 530,0 | - | - | - | 513,0 |
| 46 | - | - | 457,0 | - | - | - | 468,0 |
| 50 | - | - | 388,0 | - | - | - | 421,0 |
| 54 | - | - | 335,0 | - | - | - | 381,0 |
| 56 | - | - | - | 366,0 | - | - | 363,5 |
| 58 | - | - | - | 352,0 | - | - | 346,0 |
| 62 | - | - | - | 326,0 | - | - | 316,0 |
| 66 | - | - | - | 304,0 | - | - | 290,0 |
| 70 | - | - | - | - | - | - | 267,0 |
| 71 | - | - | - | - | 264,0 | - | 260,5 |
| 74 | - | - | - | - | 252,0 | - | 241,0 |
| 76 | - | - | - | - | 244,0 | - | 228,0 |
| 78 | - | - | - | - | - | - | 215,0 |
| 82 | - | - | - | - | - | - | 190,0 |
| 86 | - | - | - | - | - | - | 167,0 |
| 90 | - | - | - | - | - | - | 153,0 |
| 94 | - | - | - | - | - | - | - |


| $66 \mathrm{~m}+48 \mathrm{~m}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | t | t | t | t | t | t | t |
| 22 | - | 424,0* | - | - | - | - | - |
| 24 | - | 419,0* | - | - | - | - | - |
| 26 | - | 408,0* | - | - | - | - | - |
| 28 | 216,0 | 445,0 | - | - | - | - | 433,0 |
| 30 | 202,0 | 441,0 | - | - | - | - | 433,0 |
| 34 | 177,0 | 427,0 | - | - | - | - | 433,0 |
| 38 | 156,0 | 412,0 | - | - | - | - | 433,0 |
| 42 | 139,0 | 368,0 | - | - | - | - | 433,0 |
| 46 | 122,0 | 321,0 | - | - | - | - | 422,0 |
| 47 | 118,0 | 311,5 | 441,0 | - | - | - | 416,5 |
| 50 | 107,0 | 285,0 | 417,0 | - | - | - | 401,0 |
| 54 | 95,5 | 255,0 | 360,0 | - | - | - | 383,0 |
| 58 | - | , | 316,0 | - | - | - | 349,0 |
| 62 | - | - | 280,0 | - | - | - | 319,0 |
| 64 | - | - | 265,0 | 308,0 | - | - | 306,0 |
| 66 | - | - | 251,0 | 297,0 | - | - | 293,0 |
| 70 | - | - | - | 278,0 | - | - | 269,0 |
| 74 | - | - | - | 261,0 | - | - | 248,0 |
| 77 | - | - | - | 249,0 | - | - | 234,5 |
| 78 | - | - | - | - | - | - | 230,0 |
| 80 | - | - | - | - | 222,0 | - | 219,5 |
| 82 | - | - | - | - | 215,0 | - | 209,0 |
| 86 | - | - | - | - | 202,0 | - | 187,0 |
| 87 | - | - | - | - | 200,0 | - | 182,0 |
| 90 | - | - | - | - | - | - | 167,0 |
| 93 | - | - | - | - | - | 154,0 | 152,7 |
| 94 | - | - | - | - | - | 152,0 | 148,0 |
| 96 | - | - | - | - | - | 148,0 | 139,0 |
| 98 | - | - | - | - | - | - | 133,0 |
| 102 | - | - | - | - | - | - | 123,0 |
| 106 | - | - | - | - | - | - | - |

## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－ 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL SESL $15^{\circ}$ LIFTINC C CAPACITIES . TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC-1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SMST/ SEQ 150 LIFTINGCAPACITIES . TRAGFÄHIGKEITEN CAPACITÉS DELEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$ • Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－ 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL SESL $15^{\circ}$ LIFTINC C CAPACITIES . TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE

| 295 t + 60 t ZB |  |  | 19.30 m |  |  | ㄷ-ㄴ $10,50 \mathrm{~m}$ |  |  |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $72 \mathrm{~m}+96 \mathrm{~m}$ |  |  |  |  |  |  |  | $72 m+108 \mathrm{~m}$ |  |  |  |  |  |  |  |
|  | SWSL |  |  |  |  |  | SFSL |  | SWSL |  |  |  |  |  | SFSL |
|  |  | 0t-640t |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 36 | - | 167,0* | - | - | - | - | - | 40 | - | 133,0* | - | - | - | - | - |
| 38 | - | 167,0* | - | - | - | - | - | 42 | - | 132,0* | - | - | - | - | - |
| 42 | - | 164,0* | - | - | - | - | - | 46 | - | 130,0* | - | - | - | - | - |
| 46 | 86,0 | 173,0 | - | - | - | - | 170,0 | 50 | 68,5 | 134,0 | - | - | - | - | 133,0 |
| 50 | 76,0 | 170,0 | - | - | - | - | 170,0 | 54 | 60,5 | 132,0 | - | - | - | - | 133,0 |
| 54 | 67,5 | 168,0 | - | - | - | - | 170,0 | 58 | 53,0 | 131,0 | - | - | - | - | 133,0 |
| 58 | 60,0 | 166,0 | - | - | - | - | 170,0 | 62 | 46,8 | 129,0 | - | - | - | - | 132,0 |
| 62 | 53,5 | 163,0 | - | - | - | - | 170,0 | 66 | 41,0 | 127,0 | - | - | - | - | 131,0 |
| 66 | 47,6 | 161,0 | - | - | - | - | 170,0 | 70 | 35,8 | 125,0 | - | - | - | - | 129,0 |
| 70 | 42,2 | 158,0 | - | - | - | - | 167,0 | 74 | 31,1 | 123,0 | - | - | - | - | 128,0 |
| 72 | 39,8 | 157,0 | 168,0 | - | - | - | 166,0 | 78 | 26,8 | 121,0 | 124,0 | - | - | - | 125,0 |
| 74 | 37,4 | 156,0 | 168,0 | - | - | - | 165,0 | 80 | 24,8 | 120,0 | 124,0 | - | - | - | 124,0 |
| 78 | 33,0 | 148,0 | 168,0 | - | - | - | 162,0 | 82 | 22,9 | 119,0 | 124,0 | - | - | - | 123,0 |
| 82 | 29,0 | 136,0 | 168,0 | - | - | - | 159,0 | 86 | 19,4 | 116,5 | 124,0 | - | - | - | 121,0 |
| 86 | 25,3 | 125,0 | 164,0 | - | - | - | 157,0 | 90 | 16,1 | 110,5 | 124,0 | - | - | - | 119,0 |
| 88 | 23,6 | 120,0 | 157,0 | - | - | - | 155,0 | 94 | 13,0 | 102,0 | 124,0 | - | - | - | 117,0 |
| 90 | 22,0 | 115,5 | 150,0 | - | - | - | 153,0 | 96 | 11,6 | 98,0 | 124,0 | - | - | - | 116,0 |
| 94 | 18,8 | 105,5 | 138,0 | - | - | - | 150,0 | 98 | - | 94,2 | 122,0 | - | - | - | 115,0 |
| 98 | 15,8 | 94,0 | 127,0 | 150,0 | - | - | 147,0 | 102 | - | 87,0 | 112,0 | - | - | - | 113,0 |
| 100 | 14,4 | 88,0 | 121,0 | 150,0 | - | - | 145,5 | 106 | - | 79,0 | 103,0 | 109,0 | - | - | 110,0 |
| 102 | , | , | 117,0 | 150,0 | - | - | 144,0 | 110 | - | 69,5 | 95,0 | 109,0 | - | - | 108,0 |
| 106 | - | - | 108,0 | 137,0 | - | - | 137,0 | 112 | - | 64,5 | 91,5 | 109,0 | - | - | 107,0 |
| 110 | - | - | 100,0 | 126,0 | - | - | 127,0 | 114 | - | - | 88,0 | 109,0 | - | - | 106,0 |
| 112 | - | - | 96,0 | 121,0 | - | - | 122,5 | 118 | - | - | 81,0 | 103,0 | - | - | 104,0 |
| 114 | - | - | - | 117,0 | - | - | 118,0 | 122 | - | - | 75,0 | 95,0 | - | - | 101,0 |
| 118 | - | - | - | 108,0 | - | - | 110,0 | 124 | - | - | 72,0 | 91,5 | - | - | 97,0 |
| 120 | - | - | - | 104,0 | 106,0 | - | 105,0 | 126 | - | - | , | 88,0 | - | - | 93,0 |
| 122 | - | - | - | 100,0 | 103,0 | - | 100,0 | 130 | - | - | - | 81,0 | 85,5 | - | 83,5 |
| 124 | - | - | - | 96,0 | 100,0 | - | 94,7 | 134 | - | - | - | 75,0 | 80,5 | - | 75,0 |
| 126 | - | - | - | , | 97,5 | - | 89,5 | 136 | - | - | - | 72,5 | 78,5 | - | 70,5 |
| 130 | - | - | - | - | 92,5 | - | 80,0 | 138 | - | - | - | , | 76,0 | - | 66,0 |
| 134 | - | - | - | - | 87,5 | - | 70,5 | 142 | - | - | - | - | 72,0 | - | 58,0 |
| 136 | - | - | - | - | 85,5 | - | 66,0 | 146 | - | - | - | - | 68,5 | - | 50,0 |
| 138 | - | - | - | - |  | - | 61,5 | 148 | - | - | - | - | 66,5 | - | 46,2 |
| 140 | - | - | - | - | - | 59,5 | 57,0 | 150 | - | - | - | - | - | 44,4 | 43,0 |
| 142 | - | - | - | - | - | 58,0 | 52,5 | 154 | - | - | - | - | - | 41,7 | 39,4 |
| 146 | - | - | - | - | - | 54,5 | 47,9 | 156 | - | - | - | - | - | 40,8 | 36,4 |
| 150 | - | - | - | - | - | - | 42,3 | 158 | - | - | - | - | - | - | 33,5 |
| 154 | - | - | - | - | - | - | 33,9 | 162 | - | - | - | - | - | - | 26,2 |
| 158 | - | - | - | - | - | - | - | 166 | - | - | - | - | - | - | 18,9 |
| 162 | - | - | - | - | - | - | - | 170 | - | - | - | - | - | - | - |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMC CAPACITISS．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－ 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SMS/ SCQ 150 LIFTING CAPACITIES . TRAGFÄHIGKEITEN CAPACITÉS DE LEVAGE

| 295 t + 60 t ZB |  |  |  | 19-30 m |  | -T-10,50 m |  |  |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { . } 78 \mathrm{~m}+60 \mathrm{~m}$ |  |  |  |  |  |  |  | $78 \mathrm{~m}+72 \mathrm{~m}$ |  |  |  |  |  |  |  |
| $\qquad$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{H}{C}$ | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 26 | - | 293,0* | - | - | - | - | - | 30 | - | 240,0* | - | - | - | - | - |
| 28 | - | 290,0* | - | - | - | - | - | 34 | - | 233,0* | - | - | - | - | - |
| 30 | - | 285,0* | - | - | - | - | - | 38 | 126,0 | 250,0 | - | - | - | - | 243,0 |
| 34 | 153,0 | 307,0 | - | - | - | - | 299,0 | 42 | 112,0 | 244,0 | - | - | - | - | 243,0 |
| 38 | 135,0 | 298,0 | - | - | - | - | 299,0 | 46 | 100,0 | 239,0 | - | - | - | - | 243,0 |
| 42 | 120,0 | 290,0 | - | - | - | - | 299,0 | 50 | 89,5 | 233,0 | - | - | - | - | 243,0 |
| 46 | 108,0 | 282,0 | - | - | - | - | 299,0 | 54 | 81,0 | 228,0 | - | - | - | - | 243,0 |
| 50 | 97,5 | 273,0 | - | - | - | - | 299,0 | 58 | 73,0 | 222,0 | - | - | - | - | 241,0 |
| 54 | 88,0 | 265,0 | - | - | - | - | 293,0 | 62 | 66,0 | 217,0 | 254,0 | - | - | - | 235,0 |
| 56 | 84,0 | 259,0 | 314,0 | - | - | - | 288,5 | 66 | 60,0 | 207,0 | 254,0 | - | - | - | 230,0 |
| 58 | 80,0 | 246,0 | 313,0 | - | - | - | 284,0 | 70 | 54,5 | 189,0 | 250,0 | - | - | - | 224,0 |
| 62 | 73,0 | 222,0 | 307,0 | - | - | - | 273,0 | 74 | 49,3 | 166,0 | 236,0 | - | - | - | 216,0 |
| 66 | 65,5 | 195,0 | 285,0 | - | - | - | 265,0 | 78 | 44,1 | 143,0 | 214,0 | - | - | - | 211,0 |
| 70 | - | , | 255,0 | - | - | - | 257,0 | 82 | - | - | 196,0 | - | - | - | 205,0 |
| 74 | - | - | 231,0 | - | - | - | 245,0 | 86 | - | - | 179,0 | 198,0 | - | - | 195,0 |
| 77 | - | - | 215,0 | 233,0 | - | - | 230,7 | 90 | - | - | 163,0 | 187,0 | - | - | 181,0 |
| 78 | - | - | 210,0 | 229,0 | - | - | 226,0 | 92 | - | - | 152,0 | 182,0 | - | - | 174,5 |
| 80 | - | - | 200,0 | 222,0 | - | - | 217,5 | 94 | - | - |  | 177,0 | - | - | 168,0 |
| 82 | - | - | - | 216,0 | - | - | 209,0 | 98 | - | - | - | 168,0 | - | - | 156,0 |
| 86 | - | - | - | 204,0 | - | - | 193,0 | 102 | - | - | - | 160,0 | - | - | 145,0 |
| 90 | - | - | - | 193,0 | - | - | 179,0 | 104 | - | - | - | 156,0 | - | - | 140,0 |
| 94 | - | - | - | 183,0 | - | - | 166,0 | 106 | - | - | - | - | 137,0 | - | 135,0 |
| 96 | - | - | - | , | 162,0 | - | 160,0 | 110 | - | - | - | - | 130,0 | - | 125,0 |
| 98 | - | - | - | - | 158,0 | - | 154,0 | 114 | - | - | - | - | 124,0 | - | 114,0 |
| 102 | - | - | - | - | 150,0 | - | 144,0 | 116 | - | - | - | - | 122,0 | - | 108,0 |
| 104 | - | - | - | - | 146,0 | - | 137,0 | 118 | - | - | - | - | - | - | 102,0 |
| 106 | - | - | - | - | - | - | 130,0 | 122 | - | - | - | - | - | 91,5 | 90,5 |
| 110 | - | - | - | - | - | - | 116,0 | 126 | - | - | - | - | - | 86,5 | 79,5 |
| 112 | - | - | - | - | - | 111,0 | 109,5 | 130 | - | - | - | - | - |  | 68,5 |
| 114 | - | - | - | - | - | 108,0 | 103,0 | 134 | - | - | - | - | - | - | 61,5 |
| 116 | - | - | - | - | - | 105,0 | 96,5 | 138 | - | - | - | - | - | - | - |
| 118 | - | - | - | - | - | , | 90,0 | 142 | - | - | - | - | - | - | - |
| 122 | - | - | - | - | - | - | 78,5 | 146 | - | - | - | - | - | - | - |
| 126 | - | - | - | - | - | - | 72,5 | 150 | - | - | - | - | - | - | - |
| 130 | - | - | - | - | - | - | - | 154 | - | - | - | - | - | - | - |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC- 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- -1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL/ SESL $15^{\circ}$ LIFTTMG C CAPACITIES . TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ} \cdot$ Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SMS/ SCQ 150 LIFTING CAPACITIES . TRAGFÄHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC- 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- -1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ} \cdot$ Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG C CAPACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SMG/ SEQ 150 LIFTING CAPACITIES • TRAGFÄHIGKEITEN CAPACITÉS DELEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1 Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG C CAPACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks－Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－ 1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ • Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL SESL $15^{\circ}$ LIFTINC C CAPACITIES . TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFFTMG C APACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL SESL $15^{\circ}$ LIFTINC C CAPACITIES . TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen - Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMC CAPACITIES．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE

| 295 t＋ 60 t ZB |  |  |  | 19.30 m |  |  | $\square \rightarrow 10,50 \mathrm{~m}$ |  |  | $360^{\circ}$ |  |  |  | IS 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $96 \mathrm{~m}+72 \mathrm{~m}$ |  |  |  |  |  |  |  | $\text { . } 96 \mathrm{~m}+84 \mathrm{~m}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\mathrm{U}_{4}$ | SWSL |  |  |  |  |  | SFSL |
|  |  |  |  |  |  |  |  |  |  |  | 0 t |  |  |  |
| $\xrightarrow{\circ}$ | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t |  | m | t | t | t | t | t | t | t |
| 30 | － | 187，0＊ | － | － | － | － | － | 34 | － | 151，0＊ | － | － | － | － | － |
| 34 | － | 182，0＊ | － | － | － | － | － | 38 | － | 148，0＊ | － | － | － | － | － |
| 38 | － | 176，0＊ | － | － | － | － | － | 42 | － | 144，0＊ | － | － | － | － | － |
| 40 | 102，0 | 192，0 | － | － | － | － | 189，0 | 44 | 80，0 | 156，0 | － | － | － | － | 154，0 |
| 42 | 96，0 | 190，0 | － | － | － | － | 189，0 | 46 | 75，0 | 155，0 | － | － | － | － | 154，0 |
| 46 | 85，5 | 185，0 | － | － | － | － | 189，0 | 50 | 66，5 | 151，0 | － | － | － | － | 154，0 |
| 50 | 76，5 | 180，0 | － | － | － | － | 189，0 | 54 | 59，0 | 148，0 | － | － | － | － | 154，0 |
| 54 | 68，5 | 175，0 | － | － | － | － | 189，0 | 58 | 52，5 | 144，0 | － | － | － | － | 154，0 |
| 58 | 61，5 | 170，0 | － | － | － | － | 189，0 | 62 | 46，5 | 141，0 | － | － | － | － | 154，0 |
| 62 | 55，5 | 165，0 | － | － | － | － | 187，0 | 66 | 41，3 | 137，0 | － | － | － | － | 153，0 |
| 66 | 50，0 | 160，0 | 192，0 | － | － | － | 184，0 | 70 | 36，5 | 134，0 | － | － | － | － | 151，0 |
| 70 | 45，3 | 156，0 | 192，0 | － | － | － | 181，0 | 72 | 34，3 | 132，0 | 154，0 | － | － | － | 150，0 |
| 74 | 40，8 | 151，0 | 191，0 | － | － | － | 177，0 | 74 | 32，2 | 130，0 | 154，0 | － | － | － | 149，0 |
| 78 | 36，8 | 146，0 | 189，0 | － | － | － | 174，0 | 78 | 28，3 | 127，0 | 154，0 | － | － | － | 147，0 |
| 80 | 35，0 | 141，0 | 188，0 | － | － | － | 170，0 | 80 | 26，4 | 125，0 | 154，0 | － | － | － | 145，5 |
| 82 | － | ， | 186，0 | － | － | － | 168，0 | 82 | 24，7 | 123，0 | 154，0 | － | － | － | 144，0 |
| 86 | － | － | 181，0 | － | － | － | 164，0 | 86 | 21，4 | 119，0 | 152，0 | － | － | － | 142，0 |
| 90 | － | － | 178，0 | － | － | － | 161，0 | 90 | 18，4 | 110，5 | 151，0 | － | － | － | 137，0 |
| 92 | － | － | 173，0 | 164，0 | － | － | 158，5 | 92 | 17，0 | 104，0 | 150，0 | － | － | － | 136，0 |
| 94 | － | － | 166，0 | 160，0 | － | － | 156，0 | 94 | － | － | 147，0 | － | － | － | 135，0 |
| 96 | － | － | 156，0 | 155，0 | － | － | 150，0 | 98 | － | － | 145，0 | － | － | － | 132，0 |
| 98 | － | － | － | 151，0 | － | － | 144，0 | 100 | － | － | 141，0 | 127，0 | － | － | 131，0 |
| 102 | － | － | － | 143，0 | － | － | 133，0 | 102 | － | － | 136，0 | 127，0 | － | － | 130，0 |
| 106 | － | － | － | 136，0 | － | － | 122，0 | 106 | － | － | 125，0 | 126，0 | － | － | 120，0 |
| 110 | － | － | － | 130，0 | － | － | 113，0 | 108 | － | － | 117，0 | 123，0 | － | － | 115，0 |
| 112 | － | － | － | 127，0 | － | － | 108，5 | 110 | － | － | － | 120，0 | － | － | 110，0 |
| 114 | － | － | － | ， | － | － | 104，0 | 114 | － | － | － | 114，0 | － | － | 102，0 |
| 116 | － | － | － | － | 102，0 | － | 100，2 | 118 | － | － | － | 109，0 | － | － | 93，5 |
| 118 | － | － | － | － | 100，0 | － | 96，5 | 122 | － | － | － | 104，0 | － | － | 86，0 |
| 122 | － | － | － | － | 95，0 | － | 88，5 | 124 | － | － | － | 101，0 | － | － | 82，5 |
| 126 | － | － | － | － | 91，0 | － | 81，5 | 126 | － | － | － | － | 81，0 | － | 79，0 |
| 130 | － | － | － | － | － | － | 72，5 | 130 | － | － | － | － | 77，0 | － | 72，0 |
| 134 | － | － | － | － | － | － | 63，5 | 134 | － | － | － | － | 73，5 | － | 65，5 |
| 136 | － | － | － | － | － | 62，0 | 59，0 | 138 | － | － | － | － | 70，5 | － | 57，0 |
| 138 | － | － | － | － | － | 60，0 | 54，5 | 142 | － | － | － | － | － | － | 49，2 |
| 140 | － | － | － | － | － | 58，5 | 50，1 | 146 | － | － | － | － | － | 43，7 | 41，3 |
| 142 | － | － | － | － | － | － | 45，8 | 150 | － | － | － | － | － | 41，0 | 33，6 |
| 146 | － | － | － | － | － | － | 37，2 | 154 | － | － | － | － | － | － | 26，0 |
| 150 | － | － | － | － | － | － | 31，7 | 158 | － | － | － | － | － | － | 19，1 |
| 154 | － | － | － | － | － | － | － | 162 | － | － | － | － | － | － | 14，9 |
| 158 | － | － | － | － | － | － | － | 166 | － | － | － | － | － | － | － |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL/ SESL $15^{\circ}$ LIFTTMG C CAPACITIES . TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE

| 295 t + 60 t ZB |  |  |  | 19-30 m |  | $\square-10,50 \mathrm{~m}$ |  |  |  | $360^{\circ}$ |  |  |  | IS 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $96 \mathrm{~m}+96 \mathrm{~m}$ |  |  |  |  |  |  |  | $96 \mathrm{~m}+108 \mathrm{~m}$ |  |  |  |  |  |  |  |
|  | SWSL |  |  |  |  |  | SFSL |  | SWSL |  |  |  |  |  | SFSL |
|  | 0 t | 0t-640t |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 38 | . | 124,0* | - | - | - | - | - | 42 | - | 99,0* | - | - | - | - | - |
| 42 | - | 121,0* | - | - | - | - | - | 46 | - | 97,0* | - | - | - | - | - |
| 46 | - | 118,0* | - | - | - | - | - | 50 | - | 95,0* | - | - | - | - | - |
| 48 | 63,0 | 125,0 | - | - | - | - | 124,0 | 52 | 47,8 | 100,0 | - | - | - | - | - |
| 50 | 59,0 | 125,0 | - | - | - | - | 124,0 | 54 | 44,5 | 100,0 | - | - | - | - | 100,0 |
| 54 | 51,5 | 123,0 | - | - | - | - | 124,0 | 58 | 38,3 | 98,5 | - | - | - | - | 100,0 |
| 58 | 45,3 | 120,0 | - | - | - | - | 124,0 | 62 | 32,8 | 97,0 | - | - | - | - | 99,5 |
| 62 | 39,6 | 117,0 | - | - | - | - | 124,0 | 66 | 27,9 | 95,0 | - | - | - | - | 99,0 |
| 66 | 34,5 | 115,0 | - | - | - | - | 124,0 | 68 | 25,6 | 94,0 | - | - | - | - | 98,7 |
| 70 | 29,9 | 113,0 | - | - | - | - | 124,0 | 70 | 23,4 | 93,0 | - | - | - | - | 98,5 |
| 74 | 25,7 | 110,0 | - | - | - | - | 123,0 | 74 | 19,4 | 91,5 | - | - | - | - | 98,0 |
| 78 | 21,9 | 108,0 | 121,0 | - | - | - | 121,0 | 78 | 15,7 | 89,5 | - | - | - | - | 97,5 |
| 82 | 18,5 | 105,5 | 121,0 | - | - | - | 118,0 | 82 | 12,4 | 87,7 | - | - | - | - | 96,0 |
| 86 | 15,3 | 102,5 | 121,0 | - | - | - | 116,0 | 84 | 10,8 | 87,0 | 95,0 | - | - | - | 95,2 |
| 90 | 12,4 | 99,5 | 121,0 | - | - | - | 114,0 | 86 | , | 86,0 | 95,0 | - | - | - | 94,5 |
| 92 | 11,0 | 98,0 | 121,0 | - | - | - | 113,0 | 90 | - | 83,5 | 95,0 | - | - | - | 93,0 |
| 94 | , | 96,5 | 120,0 | - | - | - | 112,0 | 94 | - | 80,5 | 95,0 | - | - | - | 91,5 |
| 98 | - | 93,5 | 119,0 | - | - | - | 109,0 | 98 | - | 77,2 | 95,0 | - | - | - | 90,0 |
| 100 | - | 92,0 | 119,0 | - | - | - | 107,5 | 102 | - | 74,0 | 94,5 | - | - | - | 88,5 |
| 102 | - | , | 118,0 | - | - | - | 106,0 | 106 | - | 71,0 | 94,5 | - | - | - | 87,0 |
| 106 | - | - | 118,0 | - | - | - | 103,0 | 110 | - | 67,7 | 94,0 | - | - | - | 85,5 |
| 108 | - | - | 117,0 | 105,0 | - | - | 102,0 | 112 | - | 66,0 | 94,0 | - | - | - | 83,0 |
| 110 | - | - | 114,0 | 105,0 | - | - | 101,0 | 114 | - | - | 93,5 | - | - | - | 82,0 |
| 114 | - | - | 106,0 | 105,0 | - | - | 98,5 | 116 | - | - | 92,5 | 81,5 | - | - | 81,2 |
| 118 | - | - | 96,5 | 104,0 | - | - | 95,0 | 118 | - | - | 91,0 | 81,5 | - | - | 80,5 |
| 120 | - | - | 90,5 | 101,0 | - | - | 91,0 | 122 | - | - | 87,0 | 81,5 | - | - | 79,0 |
| 122 | - | - |  | 99,0 | - | - | 87,0 | 126 | - | - | 80,5 | 81,5 | - | - | 77,5 |
| 126 | - | - | - | 94,0 | - | - | 80,0 | 130 | - | - | 72,0 | 81,5 | - | - | 72,0 |
| 130 | - | - | - | 89,5 | - | - | 73,0 | 134 | - | - | - | 79,0 | - | - | 65,5 |
| 134 | - | - | - | 85,5 | 68,0 | - | 66,5 | 138 | - | - | - | 75,0 | - | - | 59,5 |
| 138 | - | - | - | - | 64,5 | - | 60,5 | 142 | - | - | - | 71,5 | - | - | 54,0 |
| 142 | - | - | - | - | 61,5 | - | 54,5 | 144 | - | - | - | 69,5 | 53,5 | - | 51,6 |
| 146 | - | - | - | - | 58,5 | - | 47,2 | 146 | - | - | - | 68,0 | 52,0 | - | 49,2 |
| 150 | - | - | - | - | 55,5 | - | 39,9 | 150 | - | - | - | - | 49,8 | - | 42,3 |
| 154 | - | - | - | - | , | - | 32,8 | 154 | - | - | - | - | 46,8 | - | 35,6 |
| 156 | - | - | - | - | - | 31,1 | 29,3 | 158 | - | - | - | - | 43,9 | - | 29,0 |
| 158 | - | - | - | - | - | 29,9 | 25,8 | 160 | - | - | - | - | 42,6 | - | 25,8 |
| 162 | - | - | - | - | - | 27,6 | 19,0 | 162 | - | - | - | - | - | - | 22,7 |
| 166 | - | - | - | - | - | - | 12,3 | 166 | - | - | - | - | - | 17,8 | 16,5 |
| 170 | - | - | - | - | - | - | - | 170 | - | - | - | - | - | 15,8 | 10,5 |
| 174 | - | - | - | - | - | - | - | 174 | - | - | - | - | - | 14,0 |  |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL / SFSL $15^{\circ}$ LIFTING C CAPACITIES . TRAGFAh IGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL SESL $15^{\circ}$ LIFTINC C CAPACITIES . TRAGFAhIGKEITEN CAPACITÉS DE LEVAGE

| 295 t + 60 t ZB |  |  |  | 19.30 m |  | $\xrightarrow[\sim]{\square} 10,50 \mathrm{~m}$ |  |  |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $102 m+108 m$ |  |  |  |  |  |  |  | $108 m+36 m$ |  |  |  |  |  |  |  |
|  | SWSL |  |  |  |  |  | SFSL | () | SWSL |  |  |  |  |  | SFSL |
|  |  | 0t-640t |  |  |  |  |  |  | 0 t |  |  |  | 40 t |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 42 | - | 90,5* | - | - | - | - | - | 20 | - | 283,0* | - | - | - | - | - |
| 46 | - | 88,5* | - | - | - | - | - | 22 | - | 276,0* | - | - | - | - | - |
| 50 | - | 86,5* | - | - | - | - | - | 24 | - | 269,0* | - | - | - | - | - |
| 52 | 43,6 | 91,5 | - | - | - | - | - | 26 | - | 262,0* | - | - | - | - | - |
| 54 | 40,4 | 91,5 | - | - | - | - | 91,0 | 28 | 171,0 | 291,0 | - | - | - | - | 285,0 |
| 58 | 34,4 | 89,5 | - | - | - | - | 91,0 | 30 | 159,0 | 285,0 | - | - | - | - | 285,0 |
| 62 | 29,2 | 88,0 | - | - | - | - | 91,0 | 34 | 140,0 | 272,0 | - | - | - | - | 285,0 |
| 64 | 26,8 | 87,0 | - | - | - | - | 90,7 | 38 | 125,0 | 260,0 | - | - | - | - | 285,0 |
| 66 | 24,5 | 86,0 | - | - | - | - | 90,5 | 42 | 112,0 | 249,0 | - | - | - | - | 285,0 |
| 70 | 20,3 | 84,5 | - | - | - | - | 90,0 | 46 | 101,0 | 240,0 | - | - | - | - | 285,0 |
| 74 | 16,4 | 82,5 | - | - | - | - | 89,5 | 50 | - | - | - | - | - | - | 276,0 |
| 78 | 12,8 | 80,5 | - | - | - | - | 88,5 | 52 | - | - | 288,0 | - | - | - | 272,0 |
| 80 | 11,2 | 80,0 | - | - | - | - | 88,0 | 54 | - | - | 288,0 | - | - | - | 268,0 |
| 82 | - | 79,0 | - | - | - | - | 87,5 | 58 | - | - | 280,0 | - | - | - | 260,0 |
| 86 | - | 77,0 | 85,5 | - | - | - | 86,0 | 62 | - | - | 266,0 | - | - | - | 249,0 |
| 90 | - | 75,0 | 85,5 | - | - | - | 84,5 | 66 | - | - | 259,0 | - | - | - | 240,0 |
| 94 | - | 73,0 | 85,5 | - | - | - | 83,0 | 70 | - | - | - | - | - | - | 232,0 |
| 98 | - | 70,7 | 85,5 | - | - | - | 82,0 | 74 | - | - | - | 215,0 | - | - | 212,0 |
| 102 | - | 68,5 | 85,5 | - | - | - | 80,5 | 78 | - | - | - | 201,0 | - | - | 193,0 |
| 106 | - | 66,5 | 84,5 | - | - | - | 79,0 | 82 | - | - | - | 190,0 | - | - | 177,0 |
| 110 | - | 64,2 | 84,0 | - | - | - | 77,5 | 86 | - | - | - | - | - | - | 161,0 |
| 112 | - | 63,0 | 83,5 | - | - | - | 76,5 | 90 | - | - | - | - | - | - | 147,0 |
| 114 | - | , | 83,5 | - | - | - | 75,5 | 94 | - | - | - | - | - | - | 135,0 |
| 118 | - | - | 82,5 | 72,5 | - | - | 73,0 | 95 | - | - | - | - | 134,0 | - | 132,0 |
| 122 | - | - | 81,5 | 72,5 | - | - | 72,0 | 98 | - | - | - | - | 129,0 | - | 123,0 |
| 126 | - | - | 80,0 | 72,5 | - | - | 70,5 | 100 | - | - | - | - | 126,0 | - | 118,0 |
| 130 | - | - | 76,0 | 72,5 | - | - | 68,5 | 102 | - | - | - | - | - | - | 113,0 |
| 132 | - | - | 71,0 | 72,5 | - | - | 65,2 | 106 | - | - | - | - | - | - | 103,0 |
| 134 | - | - | , | 72,5 | - | - | 62,0 | 110 | - | - | - | - | - | - | 94,5 |
| 138 | - | - | - | 70,5 | - | - | 56,0 | 112 | - | - | - | - | - | 90,5 | 88,5 |
| 142 | - | - | - | 67,0 | - | - | 51,5 | 114 | - | - | - | - | - | 88,0 | 82,5 |
| 146 | - | - | - | 63,5 | 47,9 | - | 46,9 | 118 | - | - | - | - | - | - | 71,0 |
| 148 | - | - | - | 62,0 | 46,3 | - | 43,5 | 122 | - | - | - | - | - | - | 60,0 |
| 150 | - | - | - | - | 44,7 | - | 40,2 | 126 | - | - | - | - | - | - | 49,0 |
| 154 | - | - | - | - | 41,7 | - | 33,6 | 130 | - | - | - | - | - | - | - |
| 158 | - | - | - | - | 38,9 | - | 27,3 |  |  |  |  |  |  |  |  |
| 162 | - | - | - | - | 36,3 | - | 21,2 |  |  |  |  |  |  |  |  |
| 164 | - | - | - | - | 35,1 | - | 18,2 |  |  |  |  |  |  |  |  |
| 166 | - | - | - | - | - | - | 15,2 |  |  |  |  |  |  |  |  |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFTTMG CAPACITIES．TRAGFAhIGKEITEN CAPACITÉS DELEVAGE

| 295 t＋ 60 t ZB |  |  |  | 19.30 m |  | 든 $10,50 \mathrm{~m}$ |  |  |  | $360^{\circ}$ |  |  |  | IS 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $108 \mathrm{~m}+48 \mathrm{~m}$ |  |  |  |  |  |  |  | $108 m+60 m$ |  |  |  |  |  |  |  |
|  | SWSL |  |  |  |  |  | SFSL |  | SWSL |  |  |  |  |  | SFSL |
|  |  | 0t－640t |  |  |  |  |  |  | $\begin{array}{r} \angle 0 t \\ 85^{\circ} \end{array}$ | 0t－640t |  |  |  |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  |  | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 24 |  | 230，0＊ | － | － | － | － | － | 28 | － | 189，0＊ | － | － | － | － | － |
| 26 | － | 225，0＊ | － | － | － | － | － | 30 | － | 185，0＊ | － | － | － | － | － |
| 28 | － | 220，0＊ | － | － | － | － | － | 34 | － | 177，0＊ | － | － | － | － | － |
| 30 | － | 214，0＊ | － | － | － | － | － | 36 | 112，0 | 194，0 | － | － | － | － | 191，0 |
| 32 | 137，0 | 237，0 | － | － | － | － | 233，0 | 38 | 105，0 | 192，0 | － | － | － | － | 191，0 |
| 34 | 129，0 | 233，0 | － | － | － | － | 233，0 | 42 | 93，5 | 186，0 | － | － | － | － | 191，0 |
| 38 | 114，0 | 224，0 | － | － | － | － | 233，0 | 46 | 83，5 | 179，0 | － | － | － | － | 191，0 |
| 42 | 102，0 | 215，0 | － | － | － | － | 233，0 | 50 | 75，0 | 172，0 | － | － | － | － | 191，0 |
| 46 | 91，5 | 206，0 | － | － | － | － | 233，0 | 54 | 67，5 | 166，0 | － | － | － | － | 191，0 |
| 50 | 82，5 | 199，0 | － | － | － | － | 233，0 | 58 | 61，0 | 161，0 | － | － | － | － | 190，0 |
| 54 | 74，5 | 192，0 | － | － | － | － | 229，0 | 62 | 55，0 | 156，0 | － | － | － | － | 187，0 |
| 58 | 68，0 | 185，0 | 234，0 | － | － | － | 224，0 | 64 | 52，0 | 153，0 | 192，0 | － | － | － | 185，0 |
| 62 | ， | ， | 232，0 | － | － | － | 218，0 | 66 | 49，9 | 151，0 | 192，0 | － | － | － | 183，0 |
| 66 | － | － | 226，0 | － | － | － | 213，0 | 70 | 45，2 | 146，0 | 189，0 | － | － | － | 179，0 |
| 70 | － | － | 220，0 | － | － | － | 204，0 | 74 | － | － | 185，0 | － | － | － | 175，0 |
| 74 | － | － | 210，0 | － | － | － | 198，0 | 78 | － | － | 180，0 | － | － | － | 171，0 |
| 76 | － | － | 207，0 | － | － | － | 195，5 | 82 | － | － | 176，0 | － | － | － | 165，0 |
| 78 | － | － | － | － | － | － | 193，0 | 86 | － | － | 170，0 | － | － | － | 161，0 |
| 82 | － | － | － | 183，0 | － | － | 181，0 | 88 | － | － | 167，0 | － | － | － | 159，0 |
| 86 | － | － | － | 173，0 | － | － | 165，0 | 90 | － | － | － | 161，0 | － | － | 157，0 |
| 90 | － | － | － | 163，0 | － | － | 151，0 | 94 | － | － | － | 152，0 | － | － | 145，0 |
| 94 | － | － | － | 154，0 | － | － | 138，0 | 98 | － | － | － | 144，0 | － | － | 133，0 |
| 98 | － | － | － | － | － | － | 127，0 | 102 | － | － | － | 137，0 | － | － | 122，0 |
| 102 | － | － | － | － | － | － | 116，0 | 106 | － | － | － | 130，0 | － | － | 112，0 |
| 104 | － | － | － | － | 113，0 | － | 111，0 | 110 | － | － | － | － | － | － | 103，0 |
| 106 | － | － | － | － | 110，0 | － | 106，0 | 114 | － | － | － | － | 96，5 | － | 94，0 |
| 110 | － | － | － | － | 105，0 | － | 97，0 | 118 | － | － | － | － | 92，0 | － | 86，0 |
| 114 | － | － | － | － | － | － | 88，5 | 122 | － | － | － | － | 87，5 | － | 78，5 |
| 118 | － | － | － | － | － | － | 80，5 | 126 | － | － | － | － | － | － | 71，5 |
| 122 | － | － | － | － | － | － | 70，5 | 130 | － | － | － | － | － | － | 62，5 |
| 124 | － | － | － | － | － | 70，0 | 65，5 | 134 | － | － | － | － | － | 57，0 | 53，5 |
| 126 | － | － | － | － | － | 68，0 | 60，5 | 136 | － | － | － | － | － | 55，5 | 49，2 |
| 130 | － | － | － | － | － |  | 50，5 | 138 | － | － | － | － | － | ， | 45，0 |
| 134 | － | － | － | － | － | － | 41，1 | 142 | － | － | － | － | － | － | 36，4 |
| 138 | － | － | － | － | － | － | 32，1 | 146 | － | － | － | － | － | － | 28，0 |
| 142 | － | － | － | － | － | － | ， | 150 | － | － | － | － | － | － | 20，9 |
| 146 | － | － | － | － | － | － | － | 154 | － | － | － | － | － | － | － |

## Remarks－Bemerkungen－Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## SWSL/ SESL $15^{\circ}$ LIFTTMG C CAPACITIES . TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE



## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$; capacities for intermediate boom positions are calculated by the crane control system IC-1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$; Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC- 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$; le système de commande de la grue IC- 1 calcule les charges pour les positions intermédiaires de la flèche

* Main boom angle $88^{\circ}$. Hauptauslegerwinkel $88^{\circ}$. Jarret de flèche principale $88^{\circ}$


## SWSL／SFSL $15^{\circ}$ LIFFTMG C APACITIES ．TRAGFAHIGKEITEN CAPACITÉS DE LEVAGE

| 295 t＋ 60 t ZB |  |  |  | 19.30 m |  | $\square-10,50 \mathrm{~m}$ |  |  |  | $360^{\circ}$ |  |  |  |  | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $108 \mathrm{~m}+96 \mathrm{~m}$ |  |  |  |  |  |  |  | $108 m+108 m$ |  |  |  |  |  |  |  |
|  | SWSL |  |  |  |  |  | SFSL |  | SWSL |  |  |  |  |  | SFSL |
|  |  | 0t－640t |  |  |  |  |  |  |  |  |  | 0 t |  |  |  |
|  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |  | $85^{\circ}$ | $85^{\circ}$ | $75^{\circ}$ | $65^{\circ}$ | $55^{\circ}$ | $45^{\circ}$ |  |
| m | t | t | t | t | t | t | t | m | t | t | t | t | t | t | t |
| 38 | － | 102，0＊ | － | － | － | － | － | 42 | － | 82，0＊ | － | － | － | － | － |
| 42 | － | 100，0＊ | － | － | － | － | － | 46 | － | 80，0＊ | － | － | － | － | － |
| 46 | － | 98，0＊ | － | － | － | － | － | 50 | － | 78，0＊ | － | － | － | － | － |
| 48 | 53，5 | 104，0 | － | － | － | － | 103，0 | 52 | 39，1 | 82，5 | － | － | － | － | － |
| 50 | 49，9 | 104，0 | － | － | － | － | 103，0 | 54 | 36，0 | 82，5 | － | － | － | － | 82，5 |
| 54 | 43，3 | 101，0 | － | － | － | － | 103，0 | 58 | 30，4 | 81，0 | － | － | － | － | 82，5 |
| 58 | 37，4 | 99，5 | － | － | － | － | 103，0 | 60 | 27，8 | 80，0 | － | － | － | － | 82，2 |
| 62 | 32，3 | 97，0 | － | － | － | － | 103，0 | 62 | 25，4 | 79，5 | － | － | － | － | 82，0 |
| 66 | 27，5 | 94，0 | － | － | － | － | 102，0 | 66 | 20，9 | 77，5 | － | － | － | － | 81，5 |
| 68 | 25，4 | 92，5 | － | － | － | － | 102，0 | 70 | 16，8 | 75，5 | － | － | － | － | 81，0 |
| 70 | 23，3 | 91，5 | － | － | － | － | 102，0 | 74 | 13，1 | 73，5 | － | － | － | － | 80，5 |
| 74 | 19，5 | 89，0 | － | － | － | － | 101，0 | 76 | 11，4 | 72，5 | － | － | － | － | 80，0 |
| 78 | 16，0 | 86，5 | － | － | － | － | 99，5 | 78 | ， | 71，5 | － | － | － | － | 79，5 |
| 82 | 12，8 | 83，7 | 98，0 | － | － | － | 98，0 | 82 | － | 69，7 | － | － | － | － | 78，5 |
| 84 | 11，3 | 82，5 | 98，0 | － | － | － | 97，0 | 86 | － | 68，0 | － | － | － | － | 77，0 |
| 86 | － | 81，5 | 98，0 | － | － | － | 96，0 | 88 | － | 67，0 | 76，5 | － | － | － | 76，5 |
| 90 | － | 79，2 | 97，5 | － | － | － | 94，5 | 90 | － | 66，0 | 76，5 | － | － | － | 76，0 |
| 94 | － | 77，0 | 97，0 | － | － | － | 92，5 | 94 | － | 64，2 | 76，5 | － | － | － | 74，5 |
| 98 | － | 74，7 | 95，5 | － | － | － | 91，0 | 98 | － | 62，5 | 76，0 | － | － | － | 73，0 |
| 102 | － | 72，5 | 94，5 | － | － | － | 89，5 | 102 | － | 60，7 | 75，5 | － | － | － | 72，0 |
| 104 | － | 71，5 | 94，0 | － | － | － | 88，5 | 106 | － | 59，0 | 75，0 | － | － | － | 70，5 |
| 106 | － | － | 93，0 | － | － | － | 87，5 | 110 | － | 57，2 | 74，0 | － | － | － | 69，0 |
| 110 | － | － | 92，0 | － | － | － | 84，0 | 114 | － | 55，5 | 73，5 | － | － | － | 67，5 |
| 114 | － | － | 90，0 | 83，0 | － | － | 82，0 | 116 | － | 54，5 | 73，0 | － | － | － | 65，7 |
| 118 | － | － | 88，5 | 83，0 | － | － | 80，0 | 118 | － | ． | 72，5 | － | － | － | 65，0 |
| 122 | － | － | 87，0 | 83，0 | － | － | 78，5 | 120 | － | － | 72，0 | 63，5 | － | － | 64，2 |
| 126 | － | － | － | 83，0 | － | － | 72，5 | 122 | － | － | 71，5 | 63，5 | － | － | 63，5 |
| 130 | － | － | － | 79，5 | － | － | 65，5 | 126 | － | － | 70，5 | 63，5 | － | － | 62，0 |
| 134 | － | － | － | 75，5 | － | － | 59，0 | 130 | － | － | 69，5 | 63，5 | － | － | 60，5 |
| 138 | － | － | － | 72，0 | － | － | 54，0 | 134 | － | － | 68，0 | 63，5 | － | － | 58，5 |
| 140 | － | － | － | 70，5 | － | － | 51，7 | 138 | － | － | － | 63，5 | － | － | 53，0 |
| 142 | － | － | － | － | 51，0 | － | 49，4 | 142 | － | － | － | 62，0 | － | － | 48，7 |
| 146 | － | － | － | － | 48，6 | － | 42，7 | 146 | － | － | － | 58，5 | － | － | 43，6 |
| 150 | － | － | － | － | 46，3 | － | 35，9 | 150 | － | － | － | 56，0 | 38，7 | － | 37，0 |
| 154 | － | － | － | － | 43，4 | － | 29，2 | 154 | － | － | － | － | 35，8 | － | 30，7 |
| 156 | － | － | － | － | 42，0 | － | 26，0 | 158 | － | － | － | － | 33，1 | － | 24，5 |
| 158 | － | － | － | － | － | － | 22，8 | 162 | － | － | － | － | 30，6 | － | 18，6 |
| 162 | － | － | － | － | － | － | 16，5 | 166 | － | － | － | － | 28，3 | － | 12，8 |
| 164 | － | － | － | － | － | 15，0 | 13，4 | 168 | － | － | － | － | 27，2 | － | － |
| 166 | － | － | － | － | － | 14，1 | 10，4 | 170 | － | － | － | － | － | － | － |
| 170 | － | － | － | － | － | 12，3 | － | 174 | － | － | － | － | － | － | － |

## Remarks • Bemerkungen • Remarques

Main boom angle $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ and $45^{\circ}$ ；capacities for intermediate boom positions are calculated by the crane control system IC－1
Hauptauslegerwinkel $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ und $45^{\circ}$ ；Traglasten für Zwischenstellungen des Hauptauslegers werden von der Kransteuerung IC－ 1 berechnet Jarret de flèche principale $88^{\circ}, 85^{\circ}, 75^{\circ}, 65^{\circ}, 55^{\circ}$ et $45^{\circ}$ ；le système de commande de la grue IC－ 1 calcule les charges pour les positions intermédiaires de la flèche
＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

## Q TEREX

Q-W/ WORKING RANGES • ARBEITSBEREICHE


## Q LVIFTING CAPACITIES．TRAGFÄHIGKEITEN CAPACITÉS DELEVAGE

| $\square$ | 295 t＋ 60 t ZB |  | 19－30 m | \％ 12 m | \％ $15^{\circ}$ | 三－0－640 t |  | －10，50 m |  | $360^{\circ}$ | IS 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcup_{1}$ | 近 54 m | 60 m | 66 m | 72 m | 78 m | 84 m | 90 m | $\checkmark$ 96m | 102 m | 108 m | $\xrightarrow{\bigcup}$ |
| m | t | t | t | t | t | t | t | t | t | t | m |
| 14 | 1071，0 | － | － | － | － | － | － | － | － | － | 14 |
| 16 | 1007，0 | 983，0 | 972，0 | 876，0 | 793，0 | － | － | － | － | － | 16 |
| 18 | 951，0 | 934，0 | 972，0 | 876，0 | 793，0 | 710，0 | 637，0 | 572，0 | － | － | 18 |
| 20 | 901，0 | 890，0 | 946，0 | 876，0 | 793，0 | 710，0 | 637，0 | 572，0 | 516，0 | 464，0 | 20 |
| 22 | 857，0 | 850，0 | 904，0 | 876，0 | 793，0 | 710，0 | 637，0 | 572，0 | 516，0 | 464，0 | 22 |
| 24 | 817，0 | 814，0 | 866，0 | 855，0 | 793，0 | 710，0 | 637，0 | 572，0 | 516，0 | 464，0 | 24 |
| 26 | 781，0 | 781，0 | 831，0 | 831，0 | 771，0 | 707，0 | 637，0 | 572，0 | 516，0 | 464，0 | 26 |
| 28 | 748，0 | 751，0 | 798，0 | 801，0 | 764，0 | 700，0 | 634，0 | 572，0 | 516，0 | 464，0 | 28 |
| 30 | 718，0 | 723，0 | 751，0 | 745，0 | 739，0 | 689，0 | 630，0 | 570，0 | 515，0 | 464，0 | 30 |
| 34 | 663，0 | 657，0 | 651，0 | 645，0 | 639，0 | 633，0 | 623，0 | 563，0 | 513，0 | 461，0 | 34 |
| 38 | 584，0 | 578，0 | 572，0 | 566，0 | 560，0 | 554，0 | 549，0 | 543，0 | 507，0 | 459，0 | 38 |
| 42 | 510，0 | 514，0 | 508，0 | 502，0 | 496，0 | 490，0 | 484，0 | 478，0 | 473，0 | 438，0 | 42 |
| 46 | 438，0 | 462，0 | 455，0 | 449，0 | 443，0 | 437，0 | 431，0 | 425，0 | 419，0 | 413，0 | 46 |
| 50 | 377，0 | 406，0 | 409，0 | 403，0 | 397，0 | 391，0 | 386，0 | 380，0 | 374，0 | 368，0 | 50 |
| 54 | 334，0 | 352，0 | 371，0 | 365，0 | 358，0 | 352，0 | 347，0 | 341，0 | 335，0 | 329，0 | 54 |
| 58 | 291，0 | 305，0 | 326，0 | 331，0 | 325，0 | 319，0 | 313，0 | 307，0 | 302，0 | 295，0 | 58 |
| 62 | 245，0 | 273，0 | 284，0 | 300，0 | 297，0 | 290，0 | 285，0 | 278，0 | 273，0 | 266，0 | 62 |
| 66 | － | 237，0 | 246，0 | 263，0 | 272，0 | 265，0 | 259，0 | 253，0 | 247，0 | 241，0 | 66 |
| 70 | － | － | 225，0 | 229，0 | 242，0 | 243，0 | 237，0 | 231，0 | 225，0 | 219，0 | 70 |
| 74 | － | － | － | 201，0 | 212，0 | 220，0 | 218，0 | 212，0 | 206，0 | 199，0 | 74 |
| 78 | － | － | － | － | 184，0 | 194，0 | 200，0 | 194，0 | 188，0 | 182，0 | 78 |
| 82 | － | － | － | － | 166，0 | 169，0 | 177，0 | 179，0 | 173，0 | 166，0 | 82 |
| 86 | － | － | － | － | － | 147，0 | 155，0 | 159，0 | 159，0 | 152，0 | 86 |
| 90 | － | － | － | － | － | － | 134，0 | 139，0 | 142，0 | 139，0 | 90 |
| 94 | － | － | － | － | － | － | － | 120，0 | 124，0 | 125，0 | 94 |
| 98 | － | － | － | － | － | － | － | 105，0 | 108，0 | 109，0 | 98 |
| 102 | － | － | － | － | － | － | － | － | 91，5 | 94，0 | 102 |
| 106 | － | － | － | － | － | － | － | － | － | 79，5 | 106 |
| 110 | － | － | － | － | － | － | － | － | － | － | 110 |

TECHNICAL DESCRIPTION
CRAWLER CARRIER
5-section carrier comprising carbody, two cross axles and two split-type crawler side frames. Carbody, cross axles and side frames are pin-connected hydraulically. Track width: 10.5 m .

| Carbody | Bending- and torsion-resistant welded structure fabricated from high-strength fine grain structural steel. Quick-disconnect <br> fittings (optional) facilitate removal of slew ring from carbody to minimise weight for transportation. |
| :--- | :--- |
| Cross axles | Bending- and torsion-resistant welded structure fabricated from high-strength fine grain structural steel incl. hydraulic <br> jack legs. |
| Crawler side frames | Bending- and torsion-resistant welded structure fabricated from high-strength fine grain structural steel. Split-type side <br> frames to minimise weight for transportation. Centralised lubrication included as standard. |
| Crawlers | Crawler pads made of heat-treated high-strength cast steel. 15 rollers per crawler with hardened rolling surfaces. <br> The crawlers are each driven by two hydraulic motors through closed planetary gear reduction units running in an oil <br> bath, equipped with spring-applied, hydraulically released holding brakes. Each crawler provides independent, infinitely <br> variable control and counter-rotation capability. Quadro-Drive as standard. |
| Slew unit | Four slew gearboxes in carbody powered by hydraulic motors through closed planetary gear units running in oil bath. <br> Spring-applied, hydraulically released holding brake and non-wearing hydraulic braking. |

## SUPERSTRUCTURE

| Counterweight | 295 t in combination with 60 t central ballast. |
| :---: | :---: |
| Frame | Torsion-resistant welded structure fabricated from high-strength fine grain structural steel. Longitudinal beam construction to accommodate three rope drums and boom hoist. Split-type superstructure for ease of transportation. |
| Power and control module | Two independent drive units incl. pump distribution gearbox and pumps are contained in a separate module which is connected to the side of the superstructure. <br> Power comes from a Daimler diesel engine type OM 502 LA. Output to DIN 70020: 380 kW ( 516 HP ) at $20001 / \mathrm{min}$, torque 2400 Nm at $1080 \frac{1}{1} \mathrm{~min}$. The engine complies with EUROMOT 3a, EPA T3 and Carb regulations. Pump distribution gearbox with five variable displacement axial piston pumps and gear pumps. The power and control module includes cabin, complete electrics and electric generators as standard. Fuel tank capacity: 2000 I. |
| Rope drums | Standard superstructure equipment includes three rope drums - hoist 1 , hoist 2 and boom hoist. Rope drums powered through closed planetary gear units running in oil bath. All rope drums have hydraulically released multi-disc brakes and non-wearing hydraulic braking for load lowering. Rope ends of all drums provided with quick-connect rope end fittings. Hydraulically pinned hoists H 1 and H 2 (optional H 3 ) are removable to minimise weight for transportation. |
| Control system | Demag IC-1: Electronic proportional valve pilot control integrated in stored-program control system incl. diagnostics. two colour monitors, load indicator operated via a touchscreen. Working speeds infinitely variable controlled by the lever position. Automatic power control for optimal utilisation of engine output. Standard working range limitation and ground pressure indicator. |
| Cabin | Spacious comfortable cab located at front end of power module. Large laminated glass for front and roof windows, computerised airconditioner as standard and self-contained hot air heater. Front console includes instrumentation and crane controls as well as two graphic displays. It can be tilted back, together with the operator seat, for an improved operator view of the boom point. Camera systems for monitoring the rope drums and SL ballast, hourmeter, load moment indicator, 2 working lights, storage cabinets and refrigerator are included as standard. |
| Electrical equipment | 24 V system (2 batteries $12 \mathrm{~V} / 180 \mathrm{Ah}$ ). <br> 3-phase alternator $24 \mathrm{~V}, 80 \mathrm{~A}$. <br> Plus 3-phase generator 400 V 50 Hz 20 kVA for airconditioner, heater, lighting and multiple use on the job site. Emergency generator 400 V 50 Hz 16 kVA . |
| Quick-connection | Hydraulic quick-disconnect fittings on superstructure and carrier as standard. |

## OPTIONAL EQUIP M ENT

Counterweight carrier
The counterweight carrier with a max. total weight of 640 t is adjustable over a distance of 19 m to 25 m or 24 m to 30 m from the centre of rotation, and can be operated in the circular path $\pm 30^{\circ}$ tailing and parallel travel modes. Deadweight 130 t , strips down to three components for easy transport.

## Superlift counterweights

Further options on request

## TECHNICAL DESCRIPTION

## BOOM CONFIGURATIONS

| General | Tubular chord lattice structure fabricated from high－strength fine grain structural steel．Walkways on boom，jib and mast． Hydraulic pinning． |
| :---: | :---: |
| SSL | Main boom：foot section 10 m ，inserts 6 m and 12 m ，boom head 2 m with 2 sheave－sets． Superlift equipment． <br> Main boom lengths：48－108 m |
| SSL／LSL <br> （SGL 108 m ） | Main boom：foot section 10 m ，inserts 6 m and 12 m ，extended by jib inserts 6 m and 12 m ，heavy－lift top 2 m with 1 sheave－set from main boom SSL． <br> Superlift equipment． <br> Main boom lengths：114－156 m |
| SWSL | Main boom：same as SSL．Offset $88^{\circ}$ to $45^{\circ}$ ． <br> Luffing fly jib：foot section 10 m ，inserts 6 m and 12 m ，heavy－lift top 2 m with 1 sheave－set from main boom SSL． <br> Superlift equipment． <br> Main boom lengths：54－108 m <br> Jib lengths：36－108 m |
| SFSL | Same as SWSL． Offset fly jib： $15^{\circ}$ ． |
| SFVL | Main boom：same as SSL． <br> Fixed fly jib：foot section 10 m ，heavy－lift top 2 m with 2 sheave－sets from main boom SSL Superlift equipment． <br> Main boom lengths：54－108 m <br> Jib length： 12 m <br> Offset： $15^{\circ}$ ． |
| Pinning of boom | Hydraulic assisted pinning of boom sections as standard． |
| Reeving winch | Mounted on superstructure as standard． |
| Operator aids | Electronic load indicator，hoist limit switch，limit switches for boom movements，hydraulic boom backstops，anemometer． |

## SUPERLIFT CONFIGURATIONS

Tele－SL
Mast 50 m （type 2621），counterweight tray 640 t or counterweight carrier for max． 640 t optional
Superlift radius infinitely variable during operation： 19 m to 25 m with a mast radius of 22 m and 24 m to 30 m with a mast radius of 26.4 m ．

## OPTIONAL EQUIPMENT

| Runner 60 t | Approx． 3 m ，mounts on boom head and heavy－lift top． |
| :--- | :--- |
| Hoist H3 | Mounted on superstructure． |

TECHNISCHE BESCHREIBUNG
RAUPENUNTERWAGEN
Der Raupenunterwagen ist 5-teilig und besteht aus einem Mittelstück, zwei Querträgern und zwei geteilten Raupenträgern. Raupenträger, Mittelstück und Querträger werden hydraulisch verbolzt. Die Spurbreite beträgt 10,5 m .

| Mittelstück | Biege- und verwindungssteife Schweißkonstruktion aus hochfestem Feinkornbaustahl. Die Rollendrehverbindung sitzt am <br> Mittelstück und ist mit Schnellspannmuttern (optional) auf einfache Weise zur Reduzierung des Transportgewichtes lösbar. |
| :--- | :--- |
| Querträger | Biege- und verwindungssteife Schweißkonstruktion aus hochfestem Feinkornbaustahl mit hydraulischer Abstützung. <br> Raupenträger <br> Biege- und verwindungssteife Schweißkonstruktion aus hochfestem Feinkornbaustahl. Geteilter Raupenträger zur <br> Minimierung der Transportgewichte. Zentralschmieranlage serienmäßig. |
| Raupen | Bodenplatten der Raupenketten aus vergütetem hochfesten Stahlguss. 15 Laufrollen je Raupe mit gehärteten Laufflächen. <br> Antrieb |
|  | Die Raupen werden von je zwei Hydromotoren über geschlossene, ölbadgeschmierte Planetengetriebe mit federbelasteten, <br> hydraulisch gelüfteten Haltebremsen angetrieben. Jede Seite ist stufenlos, einzeln und gegenläufig steuerbar. Quadro- <br> Antrieb serienmäßig. <br> Vier Drehwerke im Mittelstück mit Antrieb durch Hydromotor über geschlossenes, ölbadgeschmiertes Planetengetriebe. |
| Federbelastete, hydraulisch gelüftete Haltebremse und verschleißfreie hydraulische Bremsung. |  |

## OBERWAGEN

| Gegengewicht | 295 t in Verbindung mit 60 t Zentralballast. |
| :---: | :---: |
| Rahmen | Verformungssteife Schweißkonstruktion aus hochfestem Feinkornbaustahl. Die Längsträgerkonstruktion dient der Aufnahme von drei Winden und dem Einziehwerk. Aus Transportgründen ist der Oberwagen geteilt ausgeführt. |
| Antriebsmodul | Zwei voneinander unabhängige Antriebseinheiten samt Pumpenverteiler und Pumpen sitzen in einem separaten Modul, das seitlich am Oberwagen angebaut wird. <br> Antriebstyp: Daimler Dieselmotor Typ OM 502 LA. Leistung nach DIN 70020: 380 kW (516 PS) bei 2000 1/min, Drehmoment 2400 Nm bei 1080 1/min. Der Motor erfüllt die EUROMOT 3a, EPA T3 und Carb-Vorschriften. Pumpenverteilergetriebe mit fünf verstellbaren Axialkolbenpumpen und zusätzlichen Zahnradpumpen. Im Antriebsmodul sind serienmäßig die Kabine, die gesamte Elektrik sowie die Stromerzeuger integriert. Kraftstoffbehälter: 2000 I. |
| Seilwinden | Der Oberwagen ist serienmäßig mit drei Seilwinden - Hubwerk 1, Hubwerk 2 und Einziehwerk - ausgerüstet. Der Antrieb der Winden erfolgt über geschlossene, ölbadgeschmierte Planetengetriebe. Alle Seilwinden sind mit, hydraulisch gelüfteten Lamellenbremsen und verschleißfreier hydraulischer Bremsung für den Senkvorgang ausgerüstet. Die Seilenden aller Winden sind mit Pressfitting und Taschen ausgestattet. Zur Reduzierung der Transportgewichte sind die hydraulisch verbolzten Winden H 1 und H 2 (optional H 3 ) ausbaubar. |
| Steuerung | Demag IC-1: Elektronische Proportionalventilvorsteuerung integriert in eine speicherprogrammierte Steuerung mit Fehlerdiagnose. Zwei Farbbildschirme, Bedienung über Touchscreen. Die Arbeitsgeschwindigkeiten werden durch die Hebelstellung stufenlos geregelt. Leistungsregelung der Antriebe zur optimalen Ausnutzung der Motorleistung. Serienmäßig Arbeitsbereichsbegrenzung und Anzeige der Bodenpressung. |
| Kabine | Die geräumige Komfortkabine ist im vorderen Bereich des Antriebsmoduls angeordnet. Sie ist mit großzügiger Sicherheitsverglasung auch im Dachbereich, computergesteuerter Klimaanlage serienmäßig und motorunabhängiger Warmluftheizung ausgestattet. Steuer- und Kontrollelemente für die Kranfunktionen sowie zwei Grafik-Displays befinden sich in der Frontkonsole. Diese ist zur Sichtverbesserung gemeinsam mit dem Fahrersitz nach hinten neigbar. Kamerasysteme für die Überwachung von Winden und SL-Ballast, Betriebsstundenzähler, Lastmomentanzeige, 2 Arbeitsscheinwerfer, Ablageschränke und Kühlschrank serienmäßig. |
| Elektrische Anlage | 24 V System ( $2 \times$ Batterie $12 \mathrm{~V} / 180 \mathrm{Ah}$ ). <br> 3-Phasen Wechselstromgenerator $24 \mathrm{~V}, 80 \mathrm{~A}$. <br> Zusätzlich 3-Phasengenerator 400 V 50 Hz 20 KVA für Klimaanlage, Heizung, Beleuchtung und vielfältige Anwendungen auf der Baustelle. <br> Notstromaggregat 400 V 50 Hz 16 KVA. |
| Schnellverbindung | Hydraulische Schnellverbindung Oberwagen / Unterwagen serienmäßig. |

## ZUSATZAUSRÜSTUNG

| Gegengewichtswagen | Der Gegengewichtswagen mit max. 640 t Gesamtgewicht kann im Abstand von 19 m bis 25 m bzw. 24 m bis 30 m zur <br>  <br>  <br>  <br>  <br> Erehmitte frei verstellt und in den Fahrzuständen Drehen, Hinterherfahrt und Nachlauf $\pm 30^{\circ}$ betrieben werden. 130 t , zum Transport in drei Komponenten zerlegbar. |
| :--- | :--- |

## Superlift-Gegengewichte

Weitere Zusatzausrüstungen auf Anfrage!

## TECHNISCHE BESCHREIBUNG

## AUSLEGERVARIANTEN

| Allgemein | Gitter-Rohrkonstruktion aus hochfestem Feinkornbaustahl. Begehungen auf Hauptausleger, Hilfsausleger und SuperliftMast. Hydraulisch verbolzbar. |
| :---: | :---: |
| SSL | Hauptausleger: Fußstück 10 m , Zwischenstücke 6 m und 12 m , Anschlusskopf 2 m mit 2 Rollensätzen. Superlift-Einrichtung. <br> Hauptauslegerlängen: 48-108 m |
| SSL / LSL <br> (SGL 108 m ) | Hauptausleger: Fußstück 10 m , Zwischenstücke 12 m und 6 m , verlängert um Hilfsauslegerzwischenstücke 12 m und 6 m , Schwerlastkopf 2 m mit 1 Rollensatz vom Hauptausleger SSL. <br> Superlift-Einrichtung. <br> Hauptauslegerlängen: 114-156 m |
| SWSL | Hauptausleger: wie SSL. Vorneigung $88^{\circ}$ bis $45^{\circ}$. <br> Wippbarer Hilfsausleger: Fußstück 10 m , Zwischenstücke 6 m und 12 m , Schwerlastkopf 2 m mit 1 Rollensatz vom Hauptausleger SSL. <br> Superlift-Einrichtung. <br> Hauptauslegerlängen: 54-108 m <br> Hilfsauslegerlängen: 36-108 m |
| SFSL | Wie SWSL. <br> Vorneigung des Hilfsauslegers: $15^{\circ}$. |
| SFVL | Hauptausleger: wie SSL. <br> Starrer Hilfsausleger: Fußstück 10 m , Schwerlastkopf 2 m mit 2 Rollensätzen vom Hauptausleger SSL. <br> Superlift-Einrichtung. <br> Hauptauslegerlängen: 54-108 m <br> Hilfsauslegerlänge: 12 m <br> Vorneigung: $15^{\circ}$. |
| Auslegerverbolzung | Serienmäßig hydraulische verbolzbare Auslegerteile. |
| Einscherwinde | Serienmäßig am Oberwagen angebaut. |
| Sicherheitseinrichtungen | Elektronischer Lastmomentbegrenzer, Hubendschalter, Endschalter für Auslegerbewegungen, hydraulische AuslegerRückfallsicherungen, Windmesser. |

## SUPERLIFT-KONFIGURATIONEN

Tele-SL
Mast 50 m (Typ 2621), Gegengewichtstraverse 640 t oder optional Gegengewichtswagen mit max. 640 t . Superlift-Radius stufenlos im Betrieb verstellbar von 19 m bis 25 m bei Mastradius 22 m und von 24 m bis 30 m bei Mastradius $26,4 \mathrm{~m}$.

## ZUSATZAUSRÜSTUNG

| Runner 60 t | Ca. 3 m , anbaubar an Anschlusskopf und Schwerlastkopf. |
| :--- | :--- |
| Hubwerk H3 | Wird im Oberwagen eingebaut. |

DESCRIPTIF TECHNIQUE
CHÂSSIS À CHENILLES

|  | Le porteur à chenilles est réalisé en 5 parties et se compose d'une partie centrale, de deux traverses et de deux trains de <br> chenilles divisibles en deux parties. Les trains de chenilles, la partie centrale et les traverses sont verrouillés hydraulique- <br> ment. La voie est de $10,5 \mathrm{~m}$. |
| :--- | :--- |
| Partie centrale | Structure mécano-soudée rigide à la flexion et à la torsion, réalisée en acier de construction à grains fins à haute <br> résistance. Ecrous à serrage rapide (en option) facilitant le démontage de la couronne d'orientation pour réduire les poids <br> de transport. |
| Traverses | Structure mécano-soudée rigide à la flexion et à la torsion, réalisée en acier de construction à grains fins à haute <br> résistance, avec calage hydraulique. <br> Structure mécano-soudée rigide à la flexion et à la torsion, réalisée en acier de construction à grains fins à haute <br> résistance. Trains de chenilles divisibles pour minimiser les poids de transport. Graissage centralisé en série. |
| Trains de chenille | Patins de chenilles en acier coulé trempé et revenu à haute résistance. 15 galets par chenille avec surfaces de roulement <br> trempées. |
| Chenilles | Les chenilles sont entraînées chacune par deux moteurs hydrauliques avec réducteurs planétaires en carter étanche sous <br> bain d'huile, munis de freins d'arrêt à ressorts à desserrage hydraulique. Chaque côté permet un mouvement réglable <br> sans paliers individuel et dans le sens opposé. Entraînement quadro en série. |
| Mécanisme d'orientation | Quatre mécanismes d'orientation dans la partie centrale entraînés par moteurs hydrauliques avec réducteurs planétaires <br> en carter étanche sous bain d'huile. Freins d'arrêt à ressorts à desserrage hydraulique et freinage anti-usure hydraulique. |

## PARTIE SUPÉRIEURE

Contrepoids
Charpente
Module de motorisation
et de commande

Treuils

Commande Demag IC-1 : Pilotage électronique de soupapes proportionnnels intégré dans un automate programmable avec diagnostic

Cabine La cabine spacieuse et confortable est placée à la partie avant du module de motorisation et de commande. Large pare-

Connexion rapide
295 t en combinaison avec 60 t de lest central.
Structure mécano-soudée résistant à la déformation, réalisée en acier de construction à grains fins à haute résistance. Structure à longerons servant à recevoir trois treuils et le mécanisme de relevage. La partie supérieure est divisible en deux parties pour des raisons de transport.
Deux unités d'entraînement indépendantes l'une de l'autre, y compris la boîte de transfert à pompes et les pompes, sont disposées dans un module séparé attaché latéralement à la partie tournante. Type de motorisation : moteur diesel
 Le moteur satisfait aux réglements EUROMOT 3a, EPA T3 et Carb. Boîte de transfert à cinq pompes à pistons axiaux à débit variable et pompes à engrenage auxiliaires. La cabine, tout le système électrique et les équipements de génération de courant sont logés de série dans le module de motorisation et de commande. Réservoir de carburant : 2000 I.

La partie supérieure est équipée de série de trois treuils - le treuil 1 , le treuil 2 et le mécanisme de relevage. L'entraînement des treuils s'effectue avec réducteurs planétaires en carter étanche sous bain d'huile. Tous les treuils sont équipés de freins à disques multiples à ressorts à desserrage hydraulique et d'un freinage anti-usure hydraulique pour la descente. Les extrémités des câbles de tous les treuils sont munies des attaches à jonction rapide. Les treuils à verrouillage hydraulique H 1 et H 2 ( H 3 en option) sont démontables pour réduire les poids de transport de dysfonctionnement. Deux écrans couleur, commande du C.E.C. par écran tactile. Les vitesses de travail sont réglées sans paliers par la position du levier. Régulation automatique pour une exploitation optimale de la puissance du moteur. Limitation de portée et force de pression sur base en série. brise et toit en vitrage blindé, climatisation commandée par ordinateur de série et chauffage à air chaud indépendant du moteur. Console frontale avec éléments de commande et de contrôle pour les fonctions de la grue ainsi que deux affichages graphiques. Cette console est inclinable en arrière avec le siège conducteur, assurant au grutier une visibilité optimale. Systèmes de caméra pour surveiller les treuils et lest SL, compteur d'heures de service, affichage du moment de charge, 2 projecteurs de travail, armoires de rangement et réfrigérateur livrés en série.

Système 24 V (2 batteries $12 \mathrm{~V} / 180 \mathrm{Ah})$.
Génératrice à courant alternatif triphasé $24 \mathrm{~V}, 80 \mathrm{~A}$.
Génératrice triphasée supplémentaire à 400 V 50 Hz 20 kVA pour la climatisation, le chauffage, l'éclairage et de multiples applications sur le chantier.
Groupe électrogène de secours 400 V 50 Hz 16 kVA .
Connexion rapide hydraulique entre partie supérieure et châssis en série.

## EQUIPEMENTS OPTIONNELS

## Chariot contrepoids

## Contrepoids Superlift

Équipements supplémentaires sur demande!

Le chariot contrepoids avec un poids total maxi de 640 t peut être librement ajusté sur une distance comprise entre 19 m et 25 m ou entre 24 m et 30 m du centre de rotation et peut être opéré dans les modes de déplacement du genre circulaire, marche derrière $\pm 30^{\circ}$ et marche en parallèle. Poids mort $130 t$, démontable en trois parties pour un transport facile.

DESCRIPTIF TECHNIQUE
COMBINAISONS DE FLĖCHE

| Général | Construction tubulaire treillie en acier de haute résistance à grains fins．Passerelles sur flèche principale，volée variable et mât superlift．Verrouillage hydraulique． |
| :---: | :---: |
| SSL | Flèche principale ：pied 10 m ，tronçons 6 m et 12 m ，tête de flèche 2 m avec 2 jeux de poulies． Equipement Superlift． <br> Longueurs de flèche principale ：48－108 m |
| $\begin{aligned} & \text { SSL / LSL } \\ & \text { (SGL } 108 \mathrm{~m} \text { ) } \end{aligned}$ | Flèche principale ：pied 10 m ，tronçons 6 m et 12 m ，allongée de tronçons de fléchette 6 m et 12 m ， tête pour charges lourdes 2 m avec 1 jeu de poulie de flèche principale SSL． <br> Equipement Superlift． <br> Longueurs de flèche principale ：114－156 m |
| SWSL | Flèche principale ：idem SSL．Inclinaison $88^{\circ}$ à $45^{\circ}$ <br> Fléchette à volée variable ：pied 10 m ，tronçons 6 m et 12 m ，tête pour charges lourdes 2 m avec 1 jeu de poulie de flèche principale SSL． <br> Equipement Superlift． <br> Longueurs de flèche principale ：54－108 m <br> Longueurs de volée variable ： 36 －108 m |
| SFSL | Idem SWSL． <br> Inclinaison de fléchette ： $15^{\circ}$ ． |
| SFVL | Flèche principale ：idem SSL． <br> Fléchette fixe ：pied 10 m ，tête pour charges lourdes 2 m avec 2 jeux de poulies de flèche principale SSL． <br> Equipement Superlift． <br> Longueurs de flèche principale ：54－108 m <br> Longueur de volée variable ： 12 m <br> Inclinaison： $15^{\circ}$ ． |
| Boulonnement de flèche | Boulonnement hydraulique des intercalaires de flèche en série． |
| Tambour de mouflage | Monté sur la partie supérieure en série． |
| Sécurités | Contrôleur d＇état de charge électronique，contacteur de fin de course haut，limiteurs de mouvements de la flèche， retenues hydrauliques anti－basculement de la flèche，anémomètre． |
| COMBINAISONS SUPERLIFT |  |
| Tele－SL | Mât 50 m （type 2621），panier du contrepoids 640 t ou chariot contrepoids en option avec max． 640 t ． Rayon du Superlift variable de 19 m à 25 m pour un rayon de mât 22 m et de 24 m à 30 m de pour un rayon de mât 26，4 m． |
| EQUIPEMENTSOPTIONNELS |  |
| Potence de 60 t | Environ 3 m ，montage en tête de flèche et tête pour charges lourdes． |
| Treuil H3 | Monté sur la partie supérieure． |

## NOTES TO LIFTING CAPACITY. ANMERKUNGEN ZU DEN TRAGFÄHIGKEITEN CONDITIONS D'UTILISATION

Ratings are in compliance with ISO 4305
Weight of hook blocks and slings is part of the load, and is to be deducted from the capacity ratings.
Consult operation manual for further details.
Note: Data published herein is intended as a guide only and shall not be construed to warrant applicability for lifting purposes.
Crane operation is subject to the computer charts and operation manual both supplied with the crane.
In some instances the superlift counterweight does not lift off the ground with the indicated load.

Tragfähigkeiten entsprechen ISO 4305.
Das Gewicht der Unterflaschen, sowie die Lastaufnahmemittel, sind Bestandteile der Last und sind von den Tragfähigkeitsangaben abzuziehen.
Weitere Angaben in der Bedienungsanleitung des Kranes.
Anmerkung: Die Daten dieser Broschüre dienen nur zur allgemeinen Information; für ihre Richtigkeit übernehmen wir keine Haftung. Der Betrieb des Kranes ist nur mit den Original-Tragfähigkeitstabellen und mit der Bedienungsanleitung zulässig, die mit dem Kran mitgeliefert werden.
In einigen Fällen hebt das Superliftgegengewicht bei den angegebenen Traglasten nicht ab

Le tableau de charges est conforme à la norme ISO 4305.
Les poids du crochet-moufle et de tous les accessoires d'élingage font partie de la charge et sont à déduire des charges indiquées.
Pour plus de détails consulter la notice d'utilisation de la grue.
Nota: Les renseignements ci-inclus sont donnés à titre indicatif et ne représentent aucune garantie d'utilisation pour les opérations de levage. La mise en service de la grue n'est autorisée qu'à condition que les tableaux de charges ainsi que le manuel de service, tels que fournis avec la grue, soient observés.
Le contrepoids du superlift ne décolle pas dans certaines configurations des tableaux de charge.

## KEY．ZEICHENERKLÄRUNG •LÉGENDE



Track • Spur • Voie
Sunnterweight＋central ballast（ZB）• Gegengewicht＋Zentralballast（ZB）• Contrepoids＋lest central（ZB）

Product specifications and prices are subject to change without notice or obligation．The photo－ graphs and／or drawings in this document are for illustrative purposes only．Refer to the appropriate Operator＇s Manual for instructions on the proper use of this equipment．Failure to follow the appropriate Operator＇s Manual when using our equipment or to otherwise act irresponsibly may result in serious injury or death．The only warranty applicable to our equipment is the standard written warranty applicable to the particular product and sale and Terex makes no other warranty，express or implied． Products and services listed may be trademarks， service marks or trade－names of Terex Corporation and／or its subsidiaries in the USA and other countries and all rights are reserved．„TEREX＂is a registered trademark of Terex Corporation in the USA and many other countries．

Copyright © 2009 Terex Corporation．

## Gültig ab：März 2009.

Produktbeschreibungen und Preise können jederzeit und ohne Verpflichtung zur Ankündigung geändert werden．Die in diesem Dokument enthaltenen Fotos und／oder Zeichnungen dienen rein anschaulichen Zwecken．Anweisungen zur ordnungsgemäßen Ver－ wendung dieser Ausrüstung entnehmen Sie bitte dem zugehörigen Betriebshandbuch．Nichtbefolgung des Betriebshandbuchs bei der Verwendung unserer Produkte oder anderweitig fahrlässiges Verhalten kann zu schwerwiegenden Verletzungen oder Tod führen．Für dieses Produkt wird ausschließlich die entsprechende，schriftlich niedergelegte Standard－ garantie gewährt．Terex leistet keinerlei darüber hinaus gehende Garantie，weder ausdrücklich noch stillschweigend．Die Bezeichnungen der aufgeführ－ ten Produkte und Leistungen sind gegebenenfalls Marken，Servicemarken oder Handelsnamen der Terex Corporation und／oder ihrer Tochtergesell－ schaften in den USA und anderen Ländern．Alle Rechte vorbehalten．„TEREX＂ist eine eingetragene Marke der Terex Corporation in den USA und vielen anderen Ländern．

Copyright © 2009 Terex Corporation．

## Date d＇effet ：le mars 2009.

Les spécifications et prix des produits sont sujets àmodification sans avis ou obligation．Les photogra－ phies et／ou dessins contenus dans ce documents sont uniquement pour illustration．Veuillez vous référer à la notice d＇utilisation appropriée pour les instructions quant à l＇utilisation correcte de cet équipement．Tout manquement au suivi de la notice d＇utilisation appropriée lors de l＇utilisation de notre équipement ou tout acte autrement irresponsable peut résulter en blessure corporelle sérieuse ou mortelle．La seule garantie applicable à notre équi－ pement est la garantie standard écrite applicable à un produit et à une vente spécifique．Terex n＇offre aucune autre garantie，expresse ou explicite．Les produis et services proposés peuvent être des marques de fabrique，des marques de service ou des appellations commerciales de Terex Corporation et／ou ses filiales aux Etats Unis et dans les autres pays，et tous les droits sont réservés．«TEREX＂est une marque déposée de Terex Corporation aux Etats Unis et dans de nombreux autres pays．

Copyright © 2009 Terex Corporation．

Registered office／Lieferanschit／Siego so

## Terex－Demag GmbH

Dinglerstraße 24 D－66482 Zweibrücken


[^0]:    ＊Main boom angle $88^{\circ}$ ．Hauptauslegerwinkel $88^{\circ}$ ．Jarret de flèche principale $88^{\circ}$

